当前位置:首页 > 冯慈璋马西奎工程电磁场导论课后重点习题解答
??[??1??(Ar2sin??Brz)er?(Ar2sin??Brz)e??rr??
??2 ?(Arsin??Brz)k)]?z
?????[(2Arsin??Bz)er?Arcos?e??Brk)]
?1?1?????D???0[r(2Arsin??Bz)?(Arco?s)r?rr??
??(Br)] ?z1 ???0[(4Arsin??Bz)?Asin?]
rBz???0[4Asin??)?Asin?]
r?????1???1??(4)、E??????[er?e??e?]
?rr??rnis??????1???[er(Ar2sin?cos?)?e?(Ar2sin?cos?)?rr????e?1?(Ar2sin?cos?)]
rsin????1??1??[(2Arsin?cos?)er?(Ar2cos?cos?)e??(Ar2sin?sin?)e?]
rrsin??????[(2Arsin?cos?)er?(Arcos?cos?)e??(Arsin?)e?]
????D??0[??0[???1?112(rE)?(Esin?)?(E?)] r?2rsin???rsin???r?r?1?13(?2Arsin?cos?)?(?Arcos?cos?sin?)
rsin???r2?r 电磁场习题解答 第 9 页
??1(Arsin?)]
rsin???Acos?Acos?(cos2??sin2?)?]sin?sin?
??0[?6Asin?cos??解:(1)、设内球中的电位函数为?1,介质的介电常数为?1,两球表面之
间的电位函数为?2,介质的介电常数为?2,则?1,?2所满足的微分方程分别为
?2?1???1?, ?2?2??2 ?1?2选球坐标系,则
??1?11?2??11?1?2?1 (r)?(sin?)???2222?r???1r?rrsin???rsin?????2?21?2??21?1?2?2 (r)?(sin?)???2222?r???2r?rrsin???rsin???由于电荷对称,所以?1和?2均与?、?无关,即?1和?2只是r的函数,所以
?11?2??11?2??2?2, (r)??(r)??r2?r?r?2?r?1r2?r定解条件为:
分界面条件: ?1r?a??2 电位参考点: ?2 附加条件:?1r?0; ?1r?a??1?r??2r?a??2?r
r?ar?b?0;
为有限值
(2)、设介电常数为?1的介质中的电位函数为?1,介电常数为?2的介质中
电磁场习题解答 第 10 页
的电位函数为?2,则?1、?2所满足的微分方程分别为
?2?1???1?, ?2?2??2 ?1?2选球坐标系,则
??11?2??11?1?2?1(r)?2(sin?)?2?0 22?r??r?rrsin???rsin?????21?2??21?1?2?2(r)?2(sin?)?2?0
?r??r2?rrsin???rsin???2由于外球壳为一个等电位面,内球壳也为一个等电位面,所以?1和?2均
与?、?无关,即?1和?2只是r的函数,所以
1?2??11?2??2(r)?0(r)?0 , 22?r?rr?rr?r22 分界面条件: ?1?????2???
由分解面条件可知?1??2 。令 ?1??2??,则在两导体球壳之间电位满
足的微分方程为
1?2??(r)?0 2?rr?r 电位参考点: ?r?b?0;
边界条件:2?a2(?1Er??2Er)r?a?Q,即 2?a2(?1??2)(???)?Q ?rr?a(3)、设内外导体之间介质的介电常数为?,介质中的电位函数为?,则?所满足的微分方程分别为
电磁场习题解答 第 11 页
?2??0, 选球柱坐标系,则
1???1?2??2? (r)?2?2?0 2r?r?rr???z1—9—4、一个由两只同心导电球壳构成的电容器,内球半径为a,外球壳半径为b,外球壳很薄,其厚度可略去不计,两球壳上所带电荷分别是?Q和?Q,均匀分布在球面上。求这个同心球形电容器静电能量。
解:以球形电容器的心为心做一个半径为r的球面,并使其介于两导体球壳之间。则此球面上任意一点的电位移矢量为
? D?Q?er 4?r2??DQ?电场强度为 E??e 2r?4??r1??Q2而电场能量密度为 we?E?D?
232??2r4球形电容器中储存的静电场能量为
b2??Q22We??wedV????rsin?d?d?dr
Va0032??2r4b2??Q2????sin?d?d?dr a0032??2r2b1Q2Q2b10?(cos0?cos?)(2??0)?2dr?dr
ar8???ar232??2Q211Q2b?a?(?)=? 8??ab8??ab 电磁场习题解答 第 12 页
共分享92篇相关文档