µ±Ç°Î»ÖãºÊ×Ò³ > 2017-2018°æ¸ßÖÐÊýѧµÚÈýµ¥Ôªµ¼Êý¼°ÆäÓ¦ÓÃÒÉÄѹæÂÉ·½·¨½Ìѧ°¸ÐÂÈ˽ÌB°æÑ¡ÐÞ1-1
µ±a>£¬¼´a>0£¬x¡Ê(£¡Þ£¬)ʱ£¬f¡ä(x)<0£¬
33
aaax¡Ê(£¬a)ʱ£¬f¡ä(x)>0£¬x¡Ê(a£¬£«¡Þ)ʱ£¬f¡ä(x)<0£¬
3
a43
Òò´Ë£¬º¯Êýf(x)ÔÚx£½´¦È¡µÃ¼«Ð¡Öµ£a£¬ÔÚx£½a´¦È¡µÃ¼«´óÖµ0.
327
µ±a<£¬¼´a<0£¬x¡Ê(£¡Þ£¬a)ʱ£¬f¡ä(x)<0£¬
3
aaax¡Ê(a£¬)ʱ£¬f¡ä(x)>0£¬x¡Ê(£¬£«¡Þ)ʱ£¬f¡ä(x)<0£¬
3
3
a43
Òò´Ë£¬º¯Êýf(x)ÔÚx£½´¦È¡µÃ¼«´óÖµ£a£¬ÔÚx£½a´¦È¡µÃ¼«Ð¡Öµ0.
327
µãÆÀ ±¾Ìâ¶Ôf(x)Ç󵼺󣬵õ½Ò»¸ö¶þ´Îº¯Êý£¬Áîf¡ä(x)£½0µÃµ½µÄÁ½¸ö¸ùÊǺ¬ÓвÎÊýµÄ£¬Òò´ËÓ¦°´Á½¸ö¸ùµÄ´óСÀ´·ÖÀ࣮ 2£®°´ÊÇ·ñΪ¶þ´Îº¯ÊýÀ´·ÖÀà
1£a1
Àý2 ÒÑÖªº¯Êýf(x)£½ln x£ax£«£1(a¡Ü)£¬ÌÖÂÛf(x)µÄµ¥µ÷ÐÔ£®
x2
ax2£x£«1£a½â f¡ä(x)£½££¬x¡Ê(0£¬£«¡Þ)£¬
x2
Áîh(x)£½ax£x£«1£a£¬x¡Ê(0£¬£«¡Þ)£¬ (1)µ±a£½0ʱ£¬h(x)£½£x£«1£¬x¡Ê(0£¬£«¡Þ)£¬
µ±x¡Ê(0,1)ʱ£¬h(x)>0£¬´Ëʱf¡ä(x)<0£¬º¯Êýf(x)µ¥µ÷µÝ¼õ£» µ±x¡Ê(1£¬£«¡Þ)ʱ£¬h(x)<0£¬´Ëʱf¡ä(x)>0£¬º¯Êýf(x)µ¥µ÷µÝÔö£® 1
(2)µ±a¡Ù0ʱ£¬ÓÉf¡ä(x)£½0£¬½âµÃx1£½1£¬x2£½£1£¬
2
a1
¢Ùµ±a£½£¬¼´x1£½x2ʱ£¬h(x)¡Ý0ºã³ÉÁ¢£¬
2´Ëʱf¡ä(x)¡Ü0£¬f(x)ÔÚ(0£¬£«¡Þ)Éϵ¥µ÷µÝ¼õ£» 11
¢Úµ±01>0£¬
2ax¡Ê(0,1)ʱ£¬h(x)>0£¬f¡ä(x)<0£¬f(x)µ¥µ÷µÝ¼õ£¬ x¡Ê(1£¬£1)ʱ£¬h(x)<0£¬f¡ä(x)>0£¬f(x)µ¥µ÷µÝÔö£¬ ax¡Ê(£1£¬£«¡Þ)ʱ£¬h(x)>0£¬f¡ä(x)<0£¬f(x)µ¥µ÷µÝ¼õ£»
a1
¢Ûµ±a<0ʱ£¬£1<0<1£¬
11
ax¡Ê(0,1)ʱ£¬h(x)>0£¬f¡ä(x)<0£¬f(x)µ¥µ÷µÝ¼õ£¬
x¡Ê(1£¬£«¡Þ)ʱ£¬h(x)<0£¬f¡ä(x)>0£¬f(x)µ¥µ÷µÝÔö£®
×ÛÉÏËùÊö£¬µ±a¡Ü0ʱ£¬º¯Êýf(x)ÔÚ(0,1)Éϵ¥µ÷µÝ¼õ£¬ÔÚ(1£¬£«¡Þ)Éϵ¥µ÷µÝÔö£» 1
µ±a£½Ê±£¬º¯Êýf(x)ÔÚ(0£¬£«¡Þ)Éϵ¥µ÷µÝ¼õ£»
2
111
µ±0 2aaµãÆÀ ÓÉÓÚf¡ä(x)µÄ·Ö×ÓÊÇÒ»¸ö¶þ´ÎÏ²ÎµÄº¯Êý£¬Òò´ËÔÚ·ÖÀàÌÖÂÛʱ£¬Ê×ÏÈÓ¦°´aÊÇ·ñΪÁ㣬¼´¸Ãº¯ÊýÊÇ·ñΪ¶þ´Îº¯ÊýÀ´·ÖÀ࣬Ȼºóµ±a¡Ù0ʱ£¬ÔÙ°´¸ùµÄ´óСÀ´·ÖÀà(ÓëÀý1ÀàËÆ)£¬ÁíÍ⣬ӦעÒâ²ÎÊýµÄ·¶Î§£® 3£®°´×îÖµÀ´·ÖÀà Àý3 É躯Êýf(x)£½e£e£¬Èô¶ÔËùÓÐx¡Ý0¶¼ÓÐf(x)¡Ýax£¬ÇóʵÊýaµÄȡֵ·¶Î§£® ½â Áîg(x)£½f(x)£ax£¬ Ôòg¡ä(x)£½f¡ä(x)£a£½e£«e£a£¬ 1x£xxÓÉÓÚe£«e£½e£«x¡Ý2(µ±ÇÒ½öµ±x£½0ʱµÈºÅ³ÉÁ¢)£¬ eËùÒÔµ±a¡Ü2ʱ£¬g¡ä(x)£½e£«e£a¡Ý2£a¡Ý0£¬ ¹Êg(x)ÔÚ(0£¬£«¡Þ)ÉÏΪÔöº¯Êý£® ËùÒÔµ±x¡Ý0ʱ£¬g(x)¡Ýg(0)£½0£¬¼´f(x)¡Ýax. µ±a>2ʱ£¬·½³Ìg¡ä(x)£½0µÄ¸ùΪx1£½ln x£xx£xx£xa£a2£4 2 <0£¬x2£½ln a£«a2£4 2 >0£¬ ´Ëʱ£¬Èôx¡Ê(0£¬x2)£¬Ôòg¡ä(x)<0£¬¹Êg(x)ÔÚÇø¼ä(0£¬x2)ÄÚΪ¼õº¯Êý£® ËùÒÔx¡Ê(0£¬x2)ʱ£¬g(x) ×ÛÉÏËùÊö£¬Âú×ãÌõ¼þµÄʵÊýaµÄȡֵ·¶Î§Îªa¡Ü2. µãÆÀ ±¾Ìâ¶Ôº¯ÊýÇ󵼺óÓ¦¸ù¾Ýµ¼ÊýÖк¬×Ô±äÁ¿²¿·ÖµÄ×îÖµ¶Ôa½øÐзÖÀàÌÖÂÛ£® С½á ͨ¹ýÒÔÉϼ¸ÀýÎÒÃÇ¿ÉÒÔ×ܽá³ö·ÖÀàÌÖÂÛµÄÔÔò£º(1)ÒªÓÐÃ÷È·µÄ·ÖÀà±ê×¼£»(2)·ÖÀàÒª²»Öظ´¡¢²»ÒÅ©£»(3)µ±ÌÖÂ۵ĶÔÏó²»Ö¹Ò»ÖÖʱ£¬Ó¦·Ö²ã´Î½øÐУ®·ÖÀàÌÖÂÛµÄÒ»°ã²½Ö裺ÏÈÃ÷È·ÌÖÂÛ¶ÔÏó£¬È·¶¨¶ÔÏóµÄ·¶Î§£¬ÔÙÈ·¶¨·ÖÀà±ê×¼£¬Öð¶Î·ÖÎö£¬»ñµÃ½×¶ÎÐÔ½á¹û£¬×îºó¹éÄÉ×ܽáµÃ³ö½áÂÛ£® 6 µ¼Êý¼ÆËãÖеÄÒ×´íµã 1£®¶Ô¶¨ÒåÀí½â²»Í¸ Àý1 ÒÑÖªº¯Êýf(x)£½3x£2x£«5£¬ 4 3 Ôò¦¤lim x¡ú0 f1£«2¦¤x£f1 £½________. ¦¤x3 2 ´í½â ÒòΪf¡ä(x)£½12x£6x£¬ ËùÒÔÔʽ£½f¡ä(1)£½6.¹ÊÌî6. ÆÊÎö ÔÚµ¼ÊýµÄ¶¨ÒåÖУ¬ÔöÁ¿¦¤xµÄÐÎʽÊǶàÖÖ¶àÑùµÄ£¬µ«²»ÂÛ¦¤xÑ¡ÔñÄÄÖÖÔöÁ¿ÐÎʽ£¬ÏàÓ¦µÄ¦¤yҲӦѡÔñ¶ÔÓ¦µÄÐÎʽ£¬±¾Ì⦤yÖÐxµÄÔöÁ¿Îª2¦¤x£¬Ôò·ÖĸҲӦΪ2¦¤x. Õý½â ÒòΪf¡ä(x)£½12x£6x£¬ ËùÒÔÔʽ£½¦¤lim x¡ú0¹ÊÌî12. ´ð°¸ 12 2£®¶Ôµ¼ÊýµÄ¼¸ºÎÒâÒåÀí½âÓÐÎó Àý2 ÒÑÖªÇúÏßy£½f(x)£½x£3x£¬Çó¹ýµãA(2,2)ÇÒÓë¸ÃÇúÏßÏàÇеÄÇÐÏß·½³Ì£® ´í½â ÒòΪµãA(2,2)ÔÚÇúÏßy£½f(x)£½x£3xÉÏ£¬ ÇÒf¡ä(x)£½3x£3£¬ËùÒÔf¡ä(2)£½9. ËùÒÔËùÇóÇÐÏß·½³ÌΪy£2£½9(x£2)£¬ ¼´9x£y£16£½0. ÆÊÎö ÉÏÊö½â·¨´íÔÚ¶Ôµ¼ÊýµÄ¼¸ºÎÒâÒåÀí½âÓÐÎó£¬ÇÐÏßµÄбÂÊkÓ¦ÊÇÇе㴦µÄµ¼Êý£¬¶øµã 2 3 33 2 f1£«2¦¤x£f1 ¡¤2£½2f¡ä(1)£½12. 2¦¤xA(2,2)ËäÔÚÇúÏßÉÏ£¬µ«²»Ò»¶¨ÊÇÇе㣬¹Ê±¾ÌâÓ¦ÏÈÉèÇе㣬ÔÙÇóбÂÊk. Õý½â ÉèÇеãΪP(x0£¬x0£3x0)£¬ÓÖy¡ä£½3x£3. ËùÒÔÔÚµãx0´¦µÄÇÐÏß·½³ÌΪ 2 y£(x30£3x0)£½(3x0£3)(x£x0)£® 3 2 ÓÖÒòΪÇÐÏß¹ýµãA(2,2)£¬ ËùÒÔ2£(x0£3x0)£½(3x0£3)(2£x0)£¬ ¼´(x0£2)(x0£«1)£½0£¬½âµÃx0£½2»òx0£½£1. ¹ÊÇÐÏß·½³ÌΪ9x£y£16£½0»òy£½2. 3£®Çóµ¼Ê±»ìÏýÁ˳£Á¿Óë±äÁ¿ Àý3 ÇóÏÂÁк¯ÊýµÄµ¼Êý£º (1)f(x)£½a£«x£» (2)f(x)£½ex. ´í½â (1)f¡ä(x)£½(a£«x)¡ä£½2a£«2x. (2)f¡ä(x)£½(ex)¡ä£½(e)¡äx£«(x)¡äe£½ex£«e. ÆÊÎö (1)Çóµ¼ÊǶÔ×Ô±äÁ¿µÄÇóµ¼£¬Òª¿´Çå±í´ïʽÖеÄ×Ô±äÁ¿£®±¾ÌâµÄ×Ô±äÁ¿ÊÇx£¬¶øaÊdz£Á¿£® (2)ÖÐÎó°Ñ³£Êýeµ±×÷Á˱äÁ¿£® ¦Ð¦Ð ¦Ð ¦Ð ¦Ð ¦Ð 2 2 ¦Ð2 2 23 2 Õý½â (1)f¡ä(x)£½(a£«x)¡ä£½2x. (2)f¡ä(x)£½(ex)¡ä£½e(x)¡ä£½e. 4£®»ìÏý¡°ÔÚijµã´¦µÄÇÐÏß¡±Óë¡°¹ýijµãµÄÇÐÏß¡± Àý4 ÒÑÖªÇúÏßf(x)£½2x£3x£¬¹ýµãM(1£¬£1)×÷ÇúÏßf(x)µÄÇÐÏߣ¬Çó´ËÇÐÏß·½³Ì£® ´í½â ÒòΪµãMÔÚÇúÏßÉÏ£¬ËùÒÔMΪÇе㣬 ÓÖf¡ä(x)£½6x£3£¬ ËùÒÔÇÐÏßµÄбÂÊΪk£½f¡ä(1)£½6£3£½3£¬ ËùÒÔÓɵãбʽ¿ÉÇóµÃÇÐÏß·½³ÌΪy£½3x£4. ÆÊÎö ´í½âÖ±½Ó°ÑM¿´³ÉÊÇÇе㣬¶ÔÓÚ´ËÀàÎÊÌâÓ¦×ÅÖØ¿¼ÂǵãÊÇ·ñΪÇе㣬ÈôÒÑÖªµãÊÇÇе㣬Ôò´í½âÖеķ½·¨¾ÍÊÇÕýÈ·µÄ£»·ñÔò£¬¾ÍÒªÉè³öÇе㣬ÓÉÇеãд³öÇÐÏß·½³Ì£¬ÔÙ½«ÒÑÖªµã´úÈëÇóµÃÇеã×ø±ê½ø¶øµÃµ½ÇÐÏß·½³Ì£® Õý½â ÉèÇеã×ø±êΪN(x0,2x0£3x0)£¬f¡ä(x)£½6x£3£¬ ËùÒÔÇÐÏßµÄбÂÊΪk£½f¡ä(x0)£½6x0£3£¬ ËùÒÔÇÐÏß·½³ÌΪy£(2x0£3x0)£½(6x0£3)¡¤(x£x0)£® ÓÖµãMÔÚÇÐÏßÉÏ£¬ ËùÒÔÓУ1£(2x0£3x0)£½(6x0£3)(1£x0)£¬ 1½âµÃx0£½1»òx0£½££¬ 2 ¹ÊÇÐÏß·½³ÌΪ3x£y£4£½0»ò3x£«2y£1£½0. 5£®¹«Ê½»ò·¨Ôò¼ÇÒä²»×¼ 42xÀý5 ÒÑÖªº¯Êýf(x)£½x£«eln x£«£«3£¬Ôòf¡ä(2)µÈÓÚ( ) 3 2 3 22 3 2 2 3 ¦Ð ¦Ð ¦Ð 22 x12 A£®(ln 2£«)e£«3 212 C.e£«3 2 B£®0 D£®e£«3 2 4142xx´í½â ÒòΪf¡ä(x)£½(x)¡ä£«(e)¡ä(ln x)¡ä£«()¡ä£«(3)¡ä£½2x£«e¡¤£2£¬ xxx12 ËùÒÔf¡ä(2)£½e£«3. 2¹ÊÑ¡C. ÆÊÎö »ù±¾³õµÈº¯ÊýµÄÇóµ¼¹«Ê½ºÍÇóµ¼·¨Ôò£¬ÊÇÇó½Ï¸´ÔÓº¯ÊýµÄ»ù´¡£¬ÉÏÊöº¯Êý¾ÍÊÇËĸö»ù±¾º¯Êýy£½e£¬y£½ln x£¬y£½x£¬y£½CµÄºÍÓë»ý¹¹³ÉµÄ£¬Òò´ËÇóµ¼Ê±ÐèÀûÓÃÇóµ¼·¨Ôò[f(x)g(x)]¡ä£½f¡ä(x)g(x)£«f(x)g¡ä(x)£¬¶ø²»ÊÇÖ±½ÓÇóÁ½¸öº¯Êýµ¼ÊýµÄ³Ë»ý£® xu42xÕý½â ÒòΪf¡ä(x)£½(x)¡ä£«(eln x)¡ä£«()¡ä£«(3)¡ä xe4 £½2x£«(e)¡ä¡¤ln x£«e(ln x)¡ä£2£½2x£«eln x£«£2£¬ xxx4 xxxx12 ËùÒÔf¡ä(2)£½(ln 2£«)e£«3. 2¹ÊÑ¡A. ´ð°¸ A µãÆÀ »ù±¾³õµÈº¯ÊýµÄÇóµ¼¹«Ê½ÖÐÖ¸ÊýÓë¶ÔÊýº¯ÊýµÄÇóµ¼¹«Ê½Ïà¶Ô½ÏÄÑ£¬¶øÔÚ¼Ó¡¢¼õ¡¢³Ë¡¢³ýËÄÖÖÇóµ¼·¨ÔòÖÐÒ»¶¨Òª×¢Òâ¶Ô³Ë¡¢³ýÁ½ÖÖ·¨Ôò¼ÇÒäµÄ׼ȷÐÔ£®
¹²·ÖÏí92ƪÏà¹ØÎĵµ