当前位置:首页 > 专题+不等式选讲年领军高考数学一轮复习(文理通用)
解:(1)由m?1,n?1,
??2x,x??1?得f?x??x?1?x?1??2,?1?x?1,
?2x,x?1?所以f?x??4的解集为???,?2?(2)由m?n?mn,可得
?2,???.
11??1, mnf?x??x?m?x?n?m?n,
因为m?0,n?0, 所以f?x??m?n??nm?11????m?n??2???4,
mn?mn?当且仅当m?n?2时等号成立.所以f?x??4.
13.已知f?x??a?x?b?a?0?,且f?x??0的解集为x?3?x?7. (1)求实数a,b的值;
(2)若f?x?的图像与直线x?0及y?m?m?3?围成的四边形的面积不小于14,求实数m取值范围.
【答案】(1)a?5,b?2;(2)???,1? 【解析】
(1)由f?x??0得:x?b?a,b?a?x?b?a,
??即??b?a??3,解得a?5,b?2.
b?a?7??7?x,x?2fx?5?x?2?(2)??的图像与直线x?0及y?m围成的四边形ABCD,??3?x,x?2A?2,5?,B?0,3?,C?0,m?,D?7?m,m?.
过A点向y?m引垂线,垂足为E?2,m?,则
SABCD?SABCE?SAED?112?3?m?5?m??2??5?m??14. 22化简得:m2?14m?13?0,m?13(舍)或m1.
故m的取值范围为???,1?.
14.已知函数f?x??2x?1?x?1. (1)解不等式f?x??4;
(2)记函数y?f?x??3x?1的最小值m,正实数a,b满足a?b?m,求证:3?41?log3????2.
?ab?【答案】(1)??2,6?;(2)证明见解析. 【解析】
(1)f?x??4等价于
11???x??1??1?x??x? 或?或?, 22??2x?1?x?1?4????2x?1?x?1?4??2x?1?x?1?4故?2?x??1或?1?x?11或?x?6, 22综上f?x??4解集为??2,6?.
(2)f?x??3x?1?2x?1?2x?2?2x?1??2x?2??3 当且仅当?2x?1??2x?2??0取等号,
?m?3,a?b?1, ?2141?41?4ba4ba当且仅当a?,b?时等号成??????a?b??5???5?2??9,
33ab?ab?abab立,
?41??log3????log39?2.
?ab?15.已知函数f?x??x?a?2x?2?a?R?. (1)当a?2时,求不等式f?x??2的解集;
(2)若x???2,1?时不等式f?x??3?2x成立,求实数a的取值范围.
2?或f?x??4cos(2x?);(2)空集. 36【答案】(1){x|x?【解析】
解:(1)不等式f(x)?2,即x?2?2x?2?2.
?x?2?1?x?2?x?1可得?,或?或?,
x?2?2x?2?22?x?2x?2?22?x?2x?2?2???解得x?22或x?2,所以不等式的解集为{x|x?或x?2}. 33(2)当x?[?2,1]时,2x?2?0,所以f(x)?x?a?2?2x, 由f(x)?3?2x得x?a?1,即a?1?x?a?1,
则??a?1??2,该不等式无解,
a?1?1?所以实数a的取值范围是空集(或者?). 16.已知f?x??2x?2?x?1. (1)求不等式f?x??6的解集;
(2)设m、n、p为正实数,且m?n?p?f?3?,求证:mn?np?pm?12. 【答案】(1) ??1,3? (2)见证明 【解析】
(1)①x?2时,f?x??2x?4?x?1?3x?3, 由f?x??6,∴3x?3?6,∴x?3,即2?x?3,
②?1?x?2时,f?x??4?2x?x?1?5?x,由f?x??6,∴5?x?6,∴x??1,即
?1?x?2,
③x??1时,f?x??4?2x?1?x?3?3x,由f?x??6,∴3?3x?6,∴x??1,可知无解,
综上,不等式f?x??6的解集为??1,3?;
(2)∵f?x??2x?2?x?1,∴f?3??6, ∴m?n?p?f?3??6,且m,n,p为正实数
∴?m?n?p??m2?n2?p2?2mn?2mp?2np?36, ∵m2?n2?2mn,m?p?2mp,n?p?2np, ∴m?n?p?mn?mp?np,
∴?m?n?p??m2?n2?p2?2mn?2mp?2np?36?3?mn?mp?np? 又m,n,p为正实数,∴可以解得mn?np?pm?12. 17.[选修4—5:不等式选讲]
已知函数f(x)?|x?m|?|2x?m|(m?0). (1)当m?1,求不等式f(x)?1的解集;
(2)对于任意实数x,t,不等式f(x)?2?t?t?1恒成立,求实数m的取值范围.
2222222221??x?1?x??【答案】(1)?(2)?0,2? ?;
3??【解析】
(1)当m?1时,f?x??1为:x?1?2x?1?1
当x?1时,不等式为:x?1?2x?1?1,解得:x??3,无解
1111?x?1时,不等式为:?x?1?2x?1?1,解得:x??,此时??x?? 232311当x??时,不等式为:?x?1?2x?1?1,解得:x≥?1,此时?1?x??
22当?综上所述,不等式的解集为?x?1?x???
(2)对于任意实数x,t,不等式f?x??2?t?t?1恒成立等价于
??1?3?f?x?max??|2?t|?|t?1|?min
因为|2?t|?|t?1|?|(2?t)?(t?1)|?3,当且仅当(2?t)(t?1)?0时等号成立 所以?|2?t|?|t?1|?min?3
共分享92篇相关文档