µ±Ç°Î»ÖãºÊ×Ò³ > ±±Ê¦´ó°æ°ËÄê¼¶ÊýѧϲáµÚËÄÕ¡¶Òòʽ·Ö½â¡·¸´Ï°Ñ§°¸
µÚËÄÕ Òòʽ·Ö½â
ѧϰĿ±ê£º
ÖªµÀÒòʽ·Ö½âµÄÒâÒå¡£Ã÷°×Òòʽ·Ö½âÓëÕûʽ³Ë·¨µÄ¹ØÏµ¡£»áÓÃÌáÈ¡¹«Òòʽ·¨·Ö½âÒòʽ¡£Çå³þÌíÀ¨ºÅ·¨Ôò¡£»áÓÃÆ½·½²î¹«Ê½·Ö½âÒòʽ¡£»áÓÃÍêȫƽ·½¹«Ê½·Ö½âÒòʽ¡£³õ²½»á×ÛºÏÔËÓÃÒòʽ·Ö½â֪ʶ½â¾öһЩ¼òµ¥µÄÊýѧÎÊÌâ¡£ ÖØµãÓëÄѵ㣺
ÖØÄѵ㣺»á×ÛºÏÔËÓÃÒòʽ·Ö½â֪ʶ½â¾öÊýѧÎÊÌâ¡£ ֪ʶµã1 »ù±¾¸ÅÄî
°ÑÒ»¸ö¶àÏîʽ»¯³É µÄÐÎʽ£¬ÕâÖÖ±äÐνÐ×ö°ÑÕâ¸ö¶àÏîʽ £¬Ò²½Ð×ö°ÑÕâ¸ö¶àÏîʽ ¡£È磺
£¨ £© £¨ £©
ma+mb+mc m(a+b+c)
¡¤ÌṫÒòʽ·¨
¶àÏîʽma+mb+mcÖеĸ÷Ïî¶¼ÓÐÒ»¸ö¹«¹²µÄÒòʽ ,ÎÒÃǰÑÕâ¸öÒòʽ
½Ð×öÕâ¸ö¶àÏîʽµÄ¹«Òòʽ.ma+mb+mc= ¾ÍÊǰÑma+mb+mc·Ö½â³ÉÁ½¸ö
Òòʽ³Ë»ýµÄÐÎʽ£¬ÆäÖÐÒ»¸öÒòʽÊǸ÷ÏîµÄ¹«Òòʽ £¬ÁíÒ»¸öÒòʽ ÊÇma+mb+mc³ýÒÔmËùµÃµÄÉÌ£¬ÏñÕâÖÖ·Ö½âÒòʽµÄ·½·¨½Ð×öÌṫÒòʽ·¨.
ÀýÈ磺x2 ¨C x = x£¨ )£¬
8a2b-4ab+2a = 2a( ) ¡¤¹«Ê½·¨
(1)ƽ·½²î¹«Ê½£ºa2-b2=( )( ).
ÀýÈ磺4x2-9=( )2-£¨ £©2=( )( ). (2)Íêȫƽ·½¹«Ê½£ºa2¡À2ab+b2=( )2 ÀýÈ磺4x2-12xy+9y2=£¨ £©2
µÚ 1 Ò³ ¹² 4 Ò³
A²ãÁ·Ï°
1£®ÏÂÁÐÓÉ×óµ½ÓҵıäÐÎÄÄЩÊÇÒòʽ·Ö½â£¬ÄÄЩ²»ÊÇ£¨ÊǵĴò¡°¡Å¡±£¬?²»ÊǵĴò¡°¡Á¡±£©£º £¨1£©£¨x+3£©£¨x-3£©=x2-9£» £¨ £©; £¨2£©x2+2x+2=£¨x+1£©2+1£»£¨ £© £¨3£©x2-x-12=£¨x+3£©£¨x-4£©£»£¨ £©; £¨4£©x2+3xy+2y2=£¨x+2y£©£¨x+y£©£»£¨ £©
11111 £¨5£©1-2=£¨1+£©£¨1-£©£»£¨ £©; £¨6£©m2++2=£¨m+£©2£»£¨ £©
xxxmm£¨7£©a3-b3=£¨a-b£©£¨a2+ab+b2£©£®£¨ £©
B²ãÁ·Ï°
2¡¢¼ìÑéÏÂÁÐÒòʽ·Ö½âÊÇ·ñÕýÈ·£¿ 232
(1)2ab+8ab=2ab (1 + 4b) £¨ £© (2) 2x2-9= (2x+3)(2x-3) £¨ £© (3) x2-2x-3=(x-3)(x+1) ( ) (4) 36a2-12a-1= (6a-1) 2 £¨ £©
C²ãÁ·Ï°
1.Èô x2+mx-nÄÜ·Ö½â³É(x-2)(x-5),Ôòm= ,n= ¡£ 2£®x2-8x+m=(x-4)( ),ÇÒm= ¡£ ֪ʶµã2 »ù±¾·½·¨
Òòʽ·Ö½âµÄ·½·¨£º1¡¢
1 2¡¢ ¡ð
2 ¡ð
3¡¢
1.¹«Òòʽȷ¶¨
ϵÊý¡¢×Öĸ¡¢Ïàͬ×ÖĸָÊý
2.±äÐιæÂÉ£º
£¨1£©x-y= (y-x) (2) -x-y= (x+y) (3) (x-y)2= (y-x)2 (4) (x-y)3= (y-x)3
µÚ 2 Ò³ ¹² 4 Ò³
֪ʶµã3 Ò»°ã²½Öè £¨1£©È·¶¨Ó¦ÌáÈ¡µÄ¹«Òòʽ£»
£¨2£©¶àÏîʽ³ýÒÔ¹«Òòʽ£¬ËùµÃµÄÉÌ×÷ΪÁíÒ»¸öÒòʽ£» £¨3£©°Ñ¶àÏîʽд³ÉÕâÁ½¸öÒòʽµÄ»ýµÄÐÎʽ¡£ ÌôÕ½×ÔÎÒ
½«ÏÂÁи÷ʽ·Ö½âÒòʽ£º (1) 3am2-3an2 (2) 3x3+6x2y+3xy2 (3) 18a2c-8b2c £¨4£© m4- 81n4 ֪ʶµã4 ÍØÕ¹Ó¦Óà 1.¼ò»¯¼ÆËã
(1)562+56¡Á44 (2)1012 - 992 2.½â·½³Ì x3-9x=0
3.¶àÏîʽµÄ³ý·¨
(2mp-3mq+4mr) ¡Â(2p-3q+4r)= ±äʽ£º20052+2005Äܱ»2006Õû³ýÂð£¿
µÚ 3 Ò³ ¹² 4 Ò³
¿ÎÌÃС½á£º
ͨ¹ýÕâ½Ú¿ÎµÄ¸´Ï°ÄãÓÐÄÄЩеÄÊÕ»ñÓë¸ÐÊÜ?˵³öÀ´Óë´ó¼ÒÒ»Æð·ÖÏí£¡ ´ï±ê¼ì²â
1¡¢Òòʽ·Ö½â
(1) -24x3 ¨C12x2 +28x (2) m(a-3)+2(3-a)
(3) 4x2-9y2 (4) 1-x2+2xy-y2
2£®¶àÏîʽx2n£xnÌáÈ¡¹«ÒòʽxnºóÁíÒ»¸öÒòʽÊÇ£¨ £© A£®xn£1 B£®xn C£®x2n£1£1 D£®x2n£1 3£®Èô(2x)n-81=(4x2+9)(2x+3)(2x-3),Ôòn=( ) A.2
B.4
C.6
D.8
4£®¼ÆË㣺210+£¨£2£©11µÄ½á¹ûÊÇ£¨ £©
A£®210 B£®£210 C£®2 D£®£2
5£®Èç¹û2x2+mx-2¿ÉÒòʽ·Ö½âΪ£¨2x+1£©£¨x-2£©£¬ÄÇômµÄÖµÊÇ£¨ £© A£®-1 B£®1 C£®-3 D£®3
6£®¼ÆË㣺7.6¡Á199.8+4.3¡Á199.8-1.9¡Á199.8
7£®¼ÆË㣺9992+999£®
118£®ÒÑÖªx=56£¬y=44£¬Çó´úÊýʽx2+xy+y2µÄÖµ£®
22 9£®£¨°Î¸ßÌ⣩ÒÑÖªx+y=1£¬xy=-1£¬Ôòx2+y2=_______
ÒÑÖªx-y=1,xy=2£¬Ôò x3y-2x2y2+xy3=_______.
µÚ 4 Ò³ ¹² 4 Ò³
¹²·ÖÏí92ƪÏà¹ØÎĵµ