当前位置:首页 > 一维水平非饱和水动力参数的测定原理
考虑六点对称格式在(i,k?12)点列方程,令?t??,?x?h,有:
2?c?t(i,1/2)?cik?1?ci2k?t+0(?t)
D??c?x22(i,k?1/2)?D?D??c?2??x?k?1i?1ci?1ki?1k?1/2?2cick?1ik?1/22ki?ci?1ck?1/2?x?22?0(?x)?c2ki?12?c2?c?k?1i?1?2?0(?x)??
v?c?x(i,1/2)?v????2ci?1/2?ci?1/2?xv(ci?12k?1/2k?1/2k?1/2?0(?x)k?1/22?ci2?xv?k?1/2cik?1/2?ci?122k?1/2)?0(?x)
22?xv2?xv4?x2(ci?1(ci?1k?1/2?ci?1)?0(?x)?ci?1)?0(?x)kk?1k2k?1/22k?1/2(ci?1?ci?1?ci?1?ci?1)?0(?x)k?1舍去0(t)和0(?x)得到六点对称格式
cik?1?ci?2?k?t?x2D??ci?1?ci?1?2(cik?1kk?1kk?1k?1?ci)?ci?1?ci?1?kk?1k?t4?x-
v(ci?1?ci?1?ci?1?ci?1)k 令r1?v?t4?t,r2?2D?t?x2则上式变为
k?1(r1?r2)ci?1?(1?2r2)ci??(r1?r2)c令
ki?1k?1?(r1?r2)ci?1kik?1ki?1
?(1?2r2)?c(r1?r2)cAi?(r1?r2),Bi?(1?2r2),Ei??(r1?r2)
Hi??(r1?r2)ci?1?(1?2r2)ci?(r1?r2)ci?1
则上式变为
kkkAici?1?Bicik?1k?1?Eici?1?Hi
k?1i?1,2??n?1
对时间变量向后差分,对空间变量用中心差分,可得到隐格式
ci?ci?t令r1kk?1?D(ci?1?2ci?ci?1?x2kkk)?v(ci?1?ci?12?xkk)
?v?t2?x,r2?kD?x?x2则上式变为
kkk?1?(r1?r2)ci?1?(1?2r2)ci?(r1?r2)ci?1?ci令
k?1Ai??(r1?r2),Bi?(1?2r2),Ei?(r1?r2),Hi?cikkk
则有Aici?1?Bici?Eici?1?Hi
2.非稳态方程
非稳态一维垂直流情况下,土壤盐分的基本方程为
?(?c)?t???c??(qc)?Dsh(?,v) ????x??x??x式中容积含水量的求法如下
解非饱和的垂直水流方程
c(h)?(h)?t???(h)??(h)?k(h) ????x??x??x式中,h为负压水头;t为时间;z为到原点的距离(cm),向下为正;c(h)为比水容量,c(h)??md?dh;k(h)为土壤导水率,可由Jackson公式计算出
k(h)??h或k(h)?值。v?ksch?1m。求出h后,用水分特征曲线换算成相应的?q?,q为通量。
1??仍考虑六点格式,在?i,k??点将式写成差分形式
2??cik?1/2hik?1?hik?t??ki?1/2(hi?1?hik?1/2k?1k?1)?ki?1/2(hi?x2k?1/2k?1?hi?1)k?1?ki?1/2?ki?1/2?xk?1/2k?1/2i?0、1、2??n?1
式中
Ckkh整理式,并令r?k?1/2i????12121212[C(hi[(k(hik?1)?C(hi)])?k(hi?1k?1/2kk?1/2i?1/2k?1/2)]
k?1/2i?1/2[k(hi?1k?1k?1/2)?k(hikk?1/2)]k?1/2i2(hi?1?hi)?x?t,则可写成:
k?1Aihi?1?Bihi式中
k?1k?1?Eihi?1?Hi
Ai??ki?1/2Ei??kk?1/2Bi?ki?1/2?ki?1/2?rciHi?rck?1/2ik?1/2k?1/2k?1k?1/2i?1/2k?1/2i?1/2h??x(kkik?1/2i?1/2
?k)由于此方程是非线性的(即参数k、C是所求变量h的函数)在求解时可采用迭代法解决非线性问题,下面是迭代法(预报矫正法)简介:
先将已知初始的h、?、c和用Jackson公式求出的k(?) 以数据组的形式输入。然后按所选取的格式(隐式或六点差分)解方程组,计算得时段末 第k?1层上各结点的h值,然后根据水分特征曲线求出?,用Jackson公式求出k(?) ,即为校正值,以此值作为下一次的预报值。反复重复以卜步骤,迭代终止条件为:
k?1(p)k?1(p?1)max?hi?hihk?1(p?1)i?[e]
k?1(p)式中,p表示计算次数,[e]为允许相对误差,此时hi考虑溶质运移方程采用六点差分格式有;
即是的数值解,
?(?c)?t???c??(qc) ?Dsh(?,v)????x??x??x?icik?1k?1??icikk?t???Di?1/2?Gi?1/22?xK?12K?1K?1K?1(ci?1?ci?1?ci(cikk?1kk?1kk?1?ci)kkDi?1/2?Gi?1/22?xqi?1/2(cik?1/22k?1?ci?ci?1?ci?1)
k?1/2k?1kk?1?ci)?qi?1/2(ci?1?ci?1)2?x式中
Gi?1/2?
K?1?x2qi?1/2?k?1/2vik?1/2vik?1/2?t(?i?i)8k?1k
qk?1i?1/2?Dk?1/2i?1/2?ik?1??i??i?1??i?12?xkk?1k?ki?1/2
k?1/2?i?1/2?k?11??4(?k?1i??i??i?1??i?1?
kk?1kki?ki?1/2?12k?1ki?1??)?k?1/2i?12(?ik?1??i)
k将以上方程整理后可得
Aici?1?Bicik?1?Eici?1?Hi最后写成?A??Ci?
k?1k?1??H?矩阵形式
c1k?1k?1B1E2A1B2?A2??En?2Bn?2Bn?1H1H2??Hn?2Hn?1
c2?k?1An?2cn?2k?1An?1cn?1式中Ai?Gi?1/2?Di?1/2??zqi?1/2
k?1/2k?1/2k?1/2Bi??ik?1/2/r?Di?1/2?Gi?1/2?Di?1/2??zqi?1/2
k?1/2k?1/2k?1/2k?1/2
共分享92篇相关文档