当前位置:首页 > 热图 R 语言heatmap using R(pheatmap)
> data= read.table (\elevation-more than 1% relative abundance.txt\
>x=read.csv(file.choose(),row.names=1) >x = as.matrix(x)
> library(pheatmap) > pheatmap(x)
> pheatmap(data,fontsize=9, fontsize_row=6)
> pheatmap(X1, scale = \clustering_distance_row = \fontsize=9, fontsize_row=6)
> pheatmap(P1, color = colorRampPalette(c(\\\fontsize=9, fontsize_row=6)
> pheatmap(C, cluster_col=FALSE, fontsize=12, fontsize_row=12, border_color=NA) > pheatmap(data, legend = FALSE, fontsize=9, fontsize_row=6)
> pheatmap(data, cellwidth = 6, cellheight = 5, fontsize=9, fontsize_row=6) > pheatmap(data, cellwidth = 9, cellheight = 5, fontsize=9, fontsize_row=6) > pheatmap(data, cellwidth = 12, cellheight = 6, fontsize=9, fontsize_row=6) >color.map<- function(mol.biol) { if (mol.biol==\
pheatmap(X, cluster_row=FALSE,cluster_col=FALSE,fontsize=10, fontsize_row=8,cellwidth=12,cellheight=9,border_color=NA,color = colorRampPalette(rev(c(\\\\\\去掉格子的边界线;去掉进化树线
pheatmap(C,
cluster_col=FALSE,fontsize=10, fontsize_row=10,cellwidth=10,cellheight=15, color = colorRampPalette(rev(c(\\\\\\
>C1 = as.matrix(C1) > pheatmap(C1) l#gplots
library(gplots)
correlation_class<- read.csv(\
cor = correlation_class[,-1]
x<- as.matrix(cor)
heatmap(C, col=cm.colors(256), scale=\dendrogram=\Rowv=FALSE, Colv=FALSE, key=TRUE, symkey=FALSE, density.info=\trace=\cexRow=0.2, keysize=2)
heatmap.2(x, col=cm.colors(256), scale=\key=TRUE, symkey=FALSE, density.info=\trace=\cexRow=0.2, keysize=2)
tiff(filename=\dev.off()
heat.colors(256) topo.colors(100) cm.colors
共分享92篇相关文档