云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 高中数学:第二章 平面向量231 Word版含答案

高中数学:第二章 平面向量231 Word版含答案

  • 62 次阅读
  • 3 次下载
  • 2025/6/17 17:23:55

ruize

AB→

解析 为AB方向上的单位向量,

→|AB|→

AC→

为AC方向上的单位向量, →|AC|

→→ABAC→则+的方向为∠BAC的角平分线AD的方向. →→|AB||AC|又λ∈(0,+∞),

→→→→?ABAC?ABAC+所以λ?的方向与+的方向相同. →→?→→?|AB||AC|?|AB||AC|→→?ABAC?→→

+而OP=OA+λ?, →→??|AB||AC|?→

所以点P在AD上移动,

所以点P的轨迹一定通过△ABC的内心.

7.若|a|=|b|=|a-b|=r(r>0),则a与b的夹角为( ) A.30° B.45° C.60° D.90° 考点 平面向量的夹角求向量的夹角 题点 求向量的夹角 ★答案★ C 二、填空题

8.已知a=e1+e2,b=2e1-e2,c=-2e1+4e2(e1,e2是同一平面内的两个不共线向量),则c=________.(用a,b表示) 考点 平面向量基本定理 题点 用基底表示向量 ★答案★ 2a-2b 解析 设c=λa+μb,

则-2e1+4e2=λ(e1+e2)+μ(2e1-e2) =(λ+2μ)e1+(λ-μ)e2, 因为e1,e2不共线,

?-2=λ+2μ,?λ=2,??所以?解得?

??4=λ-μ,μ=-2,??

故c=2a-2b.

9.已知λ1>0,λ2>0,e1,e2是一组基底,且a=λ1e1+λ2e2,则a与e1________,a与e2________.(填“共线”或“不共线”)

ruize

考点 平面向量基本定理 题点 用基底表示向量 ★答案★ 不共线 不共线

解析 ∵e1,e2不共线,λ1>0,λ2>0, ∴a与e1,e2都不共线.

→→→

10.如图,在△MAB中,C是边AB上的一点,且AC=5CB,设MA=a,MB=b,则MC=________.(用a,b表示)

考点 平面向量基本定理 题点 用基底表示向量 15

★答案★ a+b

66

1→5→15→→→→5→→5→→

解析 MC=MA+AC=MA+AB=MA+(MB-MA)=MA+MB=a+b.

666666

11.已知e1,e2不共线,a=e1+2e2,b=2e1+λe2,要使a,b能作为平面内的一组基底,则实数λ的取值范围为______________. 考点 平面向量基本定理的应用 题点 利用平面向量基本定理求参数 ★答案★ (-∞,4)∪(4,+∞)

解析 若能作为平面内的一组基底,则a与b不共线.a=e1+2e2,b=2e1+λe2,由a≠kb,即得λ≠4.

三、解答题

DC→→→→

12.在梯形ABCD中,AB∥CD,M,N分别是DA,BC的中点,且=k.设AD=e1,AB=

AB

ruize

→→→

e2,以e1,e2为基底表示向量DC,BC,MN. 考点 平面向量基本定理 题点 用基底表示向量 解 方法一 如图所示,

DC→

∵AB=e2,且=k,

AB→→

∴DC=kAB=ke2.

→→→→

又∵AB+BC+CD+DA=0,

→→→→→→→∴BC=-AB-CD-DA=-AB+DC+AD =e1+(k-1)e2.

→→→→

又∵MN+NB+BA+AM=0, 1→→1→→

且NB=-BC,AM=AD,

22

1→→1→→→→→

∴MN=-AM-BA-NB=-AD+AB+BC

22=k+1

e. 22

方法二 如图所示,过C作CE∥DA,交AB于点E,交MN于点F.

ruize

同方法一可得DC=ke2.

→→→→→→

则BC=BE+EC=-(AB-DC)+AD=e1+(k-1)e2, →→→→1→→1→→MN=MF+FN=DC+EB=DC+(AB-DC)

22=k+1

e. 22

方法三 如图所示,连接MB,MC.

同方法一可得DC=ke2, →

BC=e1+(k-1)e2. →1→→由MN=(MB+MC),

2→1→→→→得MN=(MA+AB+MD+DC)

2

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

ruize →AB→解析 为AB方向上的单位向量, →|AB|→AC→为AC方向上的单位向量, →|AC|→→ABAC→则+的方向为∠BAC的角平分线AD的方向. →→|AB||AC|又λ∈(0,+∞), →→→→?ABAC?ABAC+所以λ?的方向与+的方向相同. →→?→→?|AB||AC|?|AB||AC|→→?ABAC?→→+而OP=OA+λ?, →→??|AB||AC|?→所以点P在AD上移动, 所以点P的轨迹一定通过△ABC的内心. 7.若|a|=|b|=|a-b|=r(r>0),则a与b的夹角为( ) A.30° B.45° C.60° D.90° 考点 平面向量的夹角求向量的夹角 题点 求向量的

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com