当前位置:首页 > (五年高考真题)2016届高考数学复习 第九章 第四节 双曲线 理(全国通用)
9.(2013·四川,6)抛物线y=4x的焦点到双曲线x-=1的渐近线的距离是( )
31A. 2
B.3 2
C.1
D.3
22
y2
解析 由题意可得,抛物线的焦点为(1,0), 双曲线的渐近线方程为y=±3x,即±3x-y=0,
|±3-0|3
由点到直线的距离公式可得抛物线的焦点到双曲线的渐近线的距离d==.
22答案 B
πxyy10.(2013·湖北,5)已知0<θ<,则双曲线C1:-=1与C:-2222
4cosθsinθsinθ
2
2
2
x2
sinθtanθ
2
2
=1的( )
A.实轴长相等 B.虚轴长相等 C.焦距相等
D.离心率相等
解析 对于双曲线C1:
x2
cosθ
2
-
y2
sinθ
2
=1,a1=cosθ,b1=sinθ,c1=1;
2
2
2
2
2
22222
对于双曲线C2:2-2=1,a2=sinθ,b2=sinθtanθ, 2sinθsinθtanθsinθsinθ
c=sinθ+sinθtanθ=sinθ(1+tanθ)=sinθ(1+2)=2 cosθcosθ
2
2
2
2
2
2
2
2
2
2
y2x2
=tanθ.
π
∵只有当θ=kπ+(k∈Z)时,
4
22222
a21=a2或b1=b2或c1=c2,
2
π
而0<θ<,∴排除A,B,C.
4
1tanθ12
设双曲线C1,C2的离心率分别为e1,e2,则e=2,e2==. 22
cosθsinθcosθ
21
2
故e1=e2,即两双曲线的离心率相等. 答案 D
11.(2015·浙江,9)双曲线-y=1的焦距是______,渐近线方程是______.
2解析 由双曲线方程得a=2,b=1,∴c=3,∴焦距为23,渐近线方程为y=±
2
2
2
x2
2
22
x.
答案 23 y=±2x 2
x22
12.(2015·北京,10)已知双曲线2-y=1(a>0)的一条渐近线为3x+y=0,则a=
a________.
解析 双曲线渐近线方程为y=±x, ∴=3,又b=1,∴a=答案
3 3
baba3. 3
x2y2
13.(2015·湖南,13)设F是双曲线C:2-2=1的一个焦点,若C上存在点P,使线段PFab的中点恰为其虚轴的一个端点,则C的离心率为________.
x2y2c2
解析 不妨设F(c,0),则由条件知P(-c,±2b),代入2-2=1得2=5,∴e=5.
aba答案
5
2
2
14.(2015·江苏,12)在平面直角坐标系xOy中,P为双曲线x-y=1右支上的一个动点.若点P到直线x-y+1=0的距离大于c恒成立,则实数c的最大值为________. 解析 双曲线x-y=1的渐近线为x±y=0,直线x-y+1=0与渐近线x-y=0平行,故两平行线的距离d=
|1-0|1+1
22
2
=22
.由点P到直线x-y+1=0的距离大于c恒成立,得2
c≤
22,故c的最大值为. 22
2
2
答案
x2y2
15.(2014·浙江,16)设直线x-3y+m=0(m≠0)与双曲线2-2=1(a>0,b>0)的两条渐
ab近线分别交于点A,B.若点P(m,0)满足|PA|=|PB|,则该双曲线的离心率是________. 解析 联立直线方程与双曲线渐近线方程y=±x可解得交点为?
ba?am,bm?,
??3b-a3b-a?
?-am,bm?,而k=1,由|PA|=|PB|,可得AB的中点与点P连线的斜率为-3,即?3b+a3b+a?AB3??
bmbm+
3b-a3b+a2
-0
=-3, -m5. 2
am-am+3b-a3b+a2
2
化简得4b=a,所以e=
2
答案
5 2
x2y2
16.(2012·江苏,8)在平面直角坐标系xOy中,若双曲线-2=1的离心率为5,则
mm+4m的值为________.
x2y2
解析 由双曲线标准方程-2=1知
mm+4a2=m>0,b2=m2+4,
∴c=a+b=m+m+4,
2
2
2
2
c2
由e=5,得2=5,
am+m2+4
∴m>0且=5,
m∴m=2. 答案 2
x22
17.(2014·江西,20)如图,已知双曲线C:2-y=1(a>0)的右焦
a点为F,点A,B分别在C的两条渐近线上,AF⊥x轴,AB⊥OB,BF∥OA(O为坐标原点). (1)求双曲线C的方程;
(2)过C上一点P(x0,y0)(y0≠0)的直线l:3
=相交于点N. 2
|MF|
证明:当点P在C上移动时,恒为定值,并求此定值.
|NF|(1)解 设F(c,0),因为b=1,所以c=a+1, 1
直线OB的方程为y=-x,
2
x0x-y0y=1与直线AF相交于点M,与直线xa2
a1
直线BF的方程为y=(x-c),
a??解得B?,-?.
2a??2
1
又直线OA的方程为y=x,则
ccac?c?-?-?ac?2a?3??A?c,?,kAB==.
ca?a?
c-
2
3?1?x222
又因为AB⊥OB,所以·?-?=-1,解得a=3,故双曲线C的方程为-y=1.
a?a?3(2)证明 由(1)知a=3,则直线l的方程为x0x3
-y0y=1(y0≠0),即y=
x0x-3
. 3y0
?2x0-3?;
因为直线AF的方程为x=2,所以直线l与AF的交点为M?2,
3y0????3x0-3?3?. 直线l与直线x=的交点为N?32
?,?2
3y0??2
|MF|
则2=|NF|
2
(2x0-3)
2
(3y0)
2
?3x0-3???1?2?
2
2
+24(3y0)
(2x0-3)=2 9y092
+(x0-2)444(2x0-3)=·22, 33y0+3(x0-2)
因为P(x0,y0)是C上一点,则-y0=1,代入上式得
3|MF|4(2x0-3)
2=·22 |NF|3x0-3+3(x0-2)4(2x0-3)4=·2=, 34x0-12x0+93|MF|223
所求定值为==. |NF|33
2
2
2
2
x20
2
x2y2
18.(2013·大纲全国,21)已知双曲线C:2-2=1(a>0,b>0)的左、右焦点分别为F1,
abF2,离心率为3,直线y=2与C的两个交点间的距离为6.
(1)求a,b;
(2)设过F2的直线l与C的左、右两支分别交于A,B两点,且|AF1|=|BF1|,证明:|AF2|,|AB|,|BF2|成等比数列.
ca2+b2
(1)解 由题设知=3,即2=9,
aa故b=8a.
所以C的方程为8x-y=8a. 将y=2代入上式, 求得x=±
2
2
2
2
2
a2+. 12
共分享92篇相关文档