当前位置:首页 > 2019年全国卷高考压轴卷数学理科 Word版含解析(最后一卷)
22?x2?x12???44?x2?x1x12x2?x1xx???,2yp?2??x1,yp?21??1, x2?x12444xp?2?y2?y1?x2?x1?x?x??x?得P点坐标P?21,?1?,由l1:2y?2y1?xx1,得Q?1,0?,
?2??2?kQF??x?4122,kl2?2????,所以kQF?kl2,即PQ∥l2.
2x12x1x121.(本小题满分12分)
?1?【答案】(1)增函数;(2)?,???;(3)见解析.
?6?【解析】(1)函数f?x?的定义域为R. 由f'?x??1?11?x2?0,知f?x?是实数集R上的增函数.
(2)令g?x??f?x??ax3?x?lnx?1?x2?ax3, 则g'?x??1?x2?1?3ax2??11?x2??,
令h?x??1?x2?1?3ax2??1, 则h'?x???1?6a?x?9ax31?x2?2?x?1?6a?9ax????1?x2.
(i)当a?1时,h'?x??0,从而h?x?是?0,???上的减函数, 6注意到h?0??0,则x?0时,h?x??0,所以g'?x??0,进而g?x?是?0,???上的减函数,
注意到g?0??0,则x?0时,g?x??0时,即f?x??ax3. (ii)当0?a?f?x??ax3;
??1?6a?1?6a?1x?0,h'x?0时,在?0,上,总有,从而知,当???????时,9a9a6????(iii)当a?0时,h'?x??0,同理可知f?x??ax3, ?1?综上,所求a的取值范围是?,???.
?6?请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.(本小题满分10分)
13
?x?2?cos? ,x?y?2?0;【答案】(1)?(2)4?25?PA?PB?4?25.
y?3?sin???x?2?cos? (?为参数)【解析】(1)圆C的参数方程为?.
y?3?sin??直线l的直角坐标方程为x?y?2?0.
(2)由直线l的方程x?y?2?0可得点A?2,0?,点B?0,2?.
设点P?x,y?,则PA?PB??2?x,?y????x,2?y??x2?y2?2x?2y?2x?4y?12. ?x?2?cos? ,则PA?PB?4sin??2cos??4?25sin??????4. 由(1)知?y?3?sin??因为??R,所以4?25?PA?PB?4?25. 23.(本小题满分10分)
55??【答案】(1)A??x|??x??;(2)见解析.
44??【解析】(1)f?x??f?x?1??5即2x?1?2x?1?5,
151当x??时,不等式化为1?2x?2x?1?5,∴??x??;
24211当??x?时,不等式化为1?2x?2x?1?5,不等式恒成立;
22当x?115时,不等式化为2x?1?2x?1?5,∴?x?. 22455??综上,集合A??x|??x??.
44??(2)由(1)知m?1,则a?b?c?1. 则则
1?ab?c2bc1?b2ac1?c2ab,同理,, ????aaabbcc1?a1?b1?c2ab2ac2bc??????8,即M?8. abccba 14
共分享92篇相关文档