云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 1990年全国高考数学试题及答案

1990年全国高考数学试题及答案

  • 62 次阅读
  • 3 次下载
  • 2025/5/25 13:46:17

,

设椭圆上的点(x,y)到点P的距离为d,则

其中

-byb.

由此得

,

由此可得 b=1,a=2.

所求椭圆的直角坐标方程是

n≥2.

(Ⅰ)如果f(x)当x∈(-∞,1]时有意义,求a的取值范围; (Ⅱ)如果a∈(0,1],证明2f(x)

[Key] (26)本题考查对数函数,指数函数,数学归纳法,不等式的知识以及综合运用有关知识解决问题的能力.

(Ⅰ)解:f(x)当x∈(-∞,1]时有意义的条件是

1+2x+…(n-1)x+nxa>0 x∈(-∞,1],n≥2,

上都是增函数,

在(-∞,1]上也是增函数,从而它在x=1时取得最大值

也就是a的取值范围为

(Ⅱ)证法一:2f(x)

[1+2x+…+(n-1)x+nxa]2

现用数学归纳法证明②式.

(A)先证明当n=2时②式成立. 假如0

(1+2xa)2=1+2·2xa+22xa2≤2(1+22x)<2(1+22xa). 假如a=1,x≠0,因为1≠2x,所以

因而当n=2时②式成立.

(B)假如当n=k(k≥2)时②式成立,即有

[1+2x+…+(k-1)x+kxa]2

=(1+2x+…+kx)2+2(1+2x+…+kx)(k+1)xa+(k+1)2xa2

+k2x)+{[1+(k+1)2xa2]+[22x+(k+1)2xa2]+…

+[k2x+(k+1)2xa2]}+(k+1)2xa2]

=(k+1)[1+22x+…+k2x+(k+1)2xa2] ≤(k+1)[1+22x+…+k2x+(k+1)2xa], 这就是说,当n=k+1时②式也成立.

根据(A),(B)可知,②式对任何n≥2(n∈N)都成立.即有 2f(x)

因为

其中等号当且仅当a1=a2=…=an时成立.

利用上面结果知,当a=1,x≠0时,因1≠2x,所以有 [1+2x+…+(n-1)x+nx]2

≤n[1+22x+…+(n-1)2x+n2xa2]

搜索更多关于: 1990年全国高考数学试题及答案 的文档
  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

, 设椭圆上的点(x,y)到点P的距离为d,则 其中 -byb. 由此得 , 由此可得 b=1,a=2. 所求椭圆的直角坐标方程是 n≥2. (Ⅰ)如果f(x)当x∈(-∞,1]时有意义,求a的取值范围; (Ⅱ)如果a∈(0,1],证明2f(x)

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com