当前位置:首页 > 高鸿业主编西方经济学第五版课后答案(包括宏微观)
此可以判断该市场同时又处于长期均衡。
因为由于(1)可知市场长期均衡时的数量是Q=3900,且由题意可知,在市场长期均衡时单个企业的产量为50,所以,由此可以求出长期均衡时行业内厂商的数量为:3900÷50=78(家) (3)根据市场短期均衡条件D`=SS`,有:8000-400P=4700+150P 解得P=6
以P=6代入市场需求函数,有:Q=8000-400×6=5600
或者,以P=6代入市场短期供给函数,有:Q=4700+150×6=5600
所以,该市场在变化了的供求函数条件下的短期均衡价格和均衡数量分别为P=6,Q=5600。
(4)与(2)中的分析类似,在市场需求函数和供给函数变化了后,该市场短期均衡的价格P=6,且由题意可知,单个企业在LAC曲线最低点的价格也为6,所以,由此可以判断该市场的之一短期均衡同时又是长期均衡。 因为由(3)可知,供求函数变化了后的市场长期均衡时的产量Q=5600,且由题意可知,在市场长期均衡时单个企业的产量为50,所以,由此可以求出市场长期均衡时行业内的厂商数量为:5600÷50=112(家)。 (5)、由以上分析和计算过程可知:在该市场供求函数发生变化前后的市场长期均衡时的价格是不变的,均为P=6,而且,单个企业在LAC曲线最低点的价格也是6,于是,我们可以判断该行业属于成本不变行业。以上(1)~(5)的分析与计算结果的部分内容如图1-30所示(见书P66)。
(6)由(1)、(2)可知,(1)时的厂商数量为78家;由(3)、(4)可知,(3)时的厂商数量为112家。因为,由(1)到(3)所增加的厂商数量为:112-78=34(家)。
5、在一个完全竞争的成本不变行业中单个厂商的长期成本函数为LAC=Q3-40Q2+600Q,g该市场的需求函数为Qd=13000-5P。求: (1)该行业的长期供给函数。
(2)该行业实现长期均衡时的厂商数量。 解答:(1)由题意可得:LAC?
LTC?Q2?40Q?600 Q37
LMC?dTC?3Q2?80Q?600 dQ由LAC=LMC,得以下方程: Q2-40Q+600=3Q2-80Q+600 Q2-20Q=0
解得Q=20(负值舍去)
由于LAC=LMC,LAC达到极小值点,所以,以Q=20代入LAC函数,便可得LAC曲线的最低点的价格为:P=202-40×20+600=200。
因为成本不变行业的长期供给曲线是从相当与LAC曲线最低点的价格高度出发的一条水平线,故有该行业的长期供给曲线为Ps=200。
(2)已知市场的需求函数为Qd=13000-5P,又从(1)中得到行业长期均衡时的价格P=200,所以,以P=200代入市场需求函数,便可以得到行业长期均衡时的数量为:Q=13000-5×200=12000。
又由于从(1)中可知行业长期均衡时单个厂商的产量Q=20,所以,该行业实现长期均衡时的厂商数量为12000÷20=600(家)。
6、已知完全竞争市场上单个厂商的长期成本函数为LTC=Q3-20Q2+200Q,市场的产品价格为P=600。求: (1)该厂商实现利润最大化时的产量、平均成本和利润各是多少? (2)该行业是否处于长期均衡?为什么?
(3)该行业处于长期均衡时每个厂商的产量、平均成本和利润各为多少? (4)判断(1)中的厂商是处于规模经济阶段,还是处于规模不经济阶段? 解答:(1)由已知条件可得:
LMC?dLTC?3Q2?40Q?200,且已知P=600, dQ根据挖目前竞争厂商利润最大化原则LMC=P,有: 3Q2-40Q+200=600
38
整理得 3Q2-40Q-400=0 解得 Q=20(负值舍去了) 由已知条件可得:LAC?LTC?Q2?20Q?200 Q以Q=20代入LAC函数,得利润最大化时的长期平均成本为 LAC=202-20×20+200=200
此外,利润最大化时的利润值为:P·Q-LTC=(600×20)-(203-20×202+200×20)=12000-4000=8000 所以,该厂商实现利润最大化时的产量Q=20,平均成本LAC=200,利润为8000。 (2)令
dLACdLAC?0,即有:?2Q?20?0 dQdQ解得Q=10
d2LAC且?2?0 2dQ所以,当Q=10时,LAC曲线达最小值。 以Q=10代入LAC函数,可得:
综合(1)和(2)的计算结果,我们可以判断(1)中的行业未实现长期均衡。因为,由(2)可知,当该行业实现长期均衡时,市场的均衡价格应等于单个厂商的LAC曲线最低点的高度,即应该有长期均衡价格P=100,且单个厂商的长期均衡产量应该是Q=10,且还应该有每个厂商的利润л=0。而事实上,由(1)可知,该厂商实现利润最大化时的价格P=600,产量Q=20,π=8000。显然,该厂商实现利润最大化时的价格、产量、利润都大于行业长期均衡时对单个厂商的要求,即价格600>100,产量20>10,利润8000>0。因此,(1)中的行业未处于长期均衡状态。
(3)由(2)已知,当该行业处于长期均衡时,单个厂商的产量Q=10,价格等于最低的长期平均成本,即有P=最小的LAC=100,利润л=0。
(4)由以上分析可以判断:(1)中的厂商处于规模不经济阶段。其理由在于:(1)中单个厂商的产量Q=20,价格P=600,它们都分别大于行业长期均衡时单个厂商在LAC曲线最低点生产的产量Q=10和面对的P=100。
39
换言之,(1)中的单个厂商利润最大化的产量和价格组合发生在LAC曲线最低点的右边,即LAC曲线处于上升段,所以,单个厂商处于规模不经济阶段。
7.某完全竞争厂商的短期边际成本函数SMC=0.6Q-10,总收益函数TR=38Q,且已知当产量Q=20时的总成本STC=260.
求该厂商利润最大化时的产量和利润
解答:由于对完全竞争厂商来说,有P=AR=MR AR=TR(Q)/Q=38,MR=dTR(Q)/dQ=38 所以 P=38
根据完全竞争厂商利润最大化的原则MC=P 0.6Q-10=38
Q*=80 即利润最大化时的产量
再根据总成本函数与边际成本函数之间的关系 STC(Q)=0.3Q2-10Q+C =0.3Q2-10Q+TFC
以Q=20时STC=260代人上式,求TFC,有 260=0.3*400-10*20+TFC TFC=340
于是,得到STC函数为 STC(Q)=0.3Q2-10Q+340
最后,以利润最大化的产量80代人利润函数,有 π(Q)=TR(Q)-STC(Q) =38Q-(0.3Q2-10Q+340) =38*80-(0.3*802-10*80+340)
40
共分享92篇相关文档