当前位置:首页 > 2017年山东省菏泽市中考数学试卷(解析版)
12.一个扇形的圆心角为100°,面积为15π cm2,则此扇形的半径长为 3【考点】MO:扇形面积的计算. 【分析】根据扇形的面积公式S=【解答】解:设该扇形的半径为R,则解得R=3
.
cm.
即可求得半径.
=15π,
.
即该扇形的半径为3故答案是:3
.
13.直线y=kx(k>0)与双曲线y=交于A(x1,y1)和B(x2,y2)两点,则3x1y2﹣9x2y1的值为 36 .
【考点】G8:反比例函数与一次函数的交点问题.
【分析】由反比例函数图象上点的坐标特征,两交点坐标关于原点对称,故x1=﹣x2,y1=﹣y2,再代入3x1y2﹣9x2y1得出答案.
【解答】解:由图象可知点A(x1,y1),B(x2,y2)关于原点对称, ∴x1=﹣x2,y1=﹣y2,
把A(x1,y1)代入双曲线y=,得x1y1=6, ∴3x1y2﹣9x2y1 =﹣3x1y1+9x1y1 =﹣18+54 =36.
故答案为:36.
14.如图,AB⊥y轴,垂足为B,将△ABO绕点A逆时针旋转到△AB1O1的位置,
第13页(共26页)
使点B的对应点B1落在直线y=﹣x上,再将△AB1O1绕点B1逆时针旋转到△
x上,依次进行下去…若点,9+3
) .
A1B1O1的位置,使点O1的对应点O2落在直线y=﹣B的坐标是(0,1),则点O12的纵坐标为 (﹣9﹣9
【考点】R7:坐标与图形变化﹣旋转;D2:规律型:点的坐标;F8:一次函数图象上点的坐标特征.
【分析】观察图象可知,O12在直线y=﹣=18+6
,由此即可解决问题.
x时,
x时,OO12=6?OO2=6(1+
+2)
【解答】解:观察图象可知,O12在直线y=﹣OO12=6?OO2=6(1+
+2)=18+6
,
∴O12的横坐标=﹣(18+6O12的纵坐标=OO12=9+3∴O12(﹣9﹣9
,9+3
)?cos30°=﹣9﹣9, ).
).
,
故答案为(﹣9﹣9
,9+3
三、解答题(共10小题,共78分) 15.计算:﹣12﹣|3﹣
|+2
sin45°﹣(
﹣1)2.
【考点】79:二次根式的混合运算;T5:特殊角的三角函数值.
【分析】直接利用绝对值的性质以及特殊角的三角函数值和完全平方公式分别化简求出答案.
【解答】解:原式=﹣1﹣(
﹣3)+2
×
﹣
第14页(共26页)
=﹣1+3﹣=﹣2016+2
+﹣2018+2.
16.先化简,再求值:(1+数解.
)÷,其中x是不等式组的整
【考点】6D:分式的化简求值;CC:一元一次不等式组的整数解.
【分析】解不等式组,先求出满足不等式组的整数解.化简分式,把不等式组的整数解代入化简后的分式,求出其值. 【解答】解:不等式组解①,得x<3; 解②,得x>1.
∴不等式组的解集为1<x<3. ∴不等式组的整数解为x=2. ∵(1+=
=4(x﹣1).
当x=2时,原式=4×(2﹣1) =4.
17.如图,E是?ABCD的边AD的中点,连接CE并延长交BA的延长线于F,若CD=6,求BF的长.
)÷
【考点】L5:平行四边形的性质.
【分析】由平行四边形的性质得出AB=CD=6,AB∥CD,由平行线的性质得出∠
第15页(共26页)
F=∠DCE,由AAS证明△AEF≌△DEC,得出AF=CD=6,即可求出BF的长. 【解答】解:∵E是?ABCD的边AD的中点, ∴AE=DE,∵四边形ABCD是平行四边形, ∴AB=CD=6,AB∥CD, ∴∠F=∠DCE, 在△AEF和△DEC中,∴△AEF≌△DEC(AAS), ∴AF=CD=6, ∴BF=AB+AF=12.
18.如图,某小区①号楼与?号楼隔河相望,李明家住在①号楼,他很想知道?号楼的高度,于是他做了一些测量,他先在B点测得C点的仰角为60°,然后到42米高的楼顶A处,测得C点的仰角为30°,请你帮助李明计算?号楼的高度CD.
,
【考点】TA:解直角三角形的应用﹣仰角俯角问题.
【分析】作AE⊥CD,用BD可以分别表示DE,CD的长,根据CD﹣DE=AB,即可求得BCD长,即可解题. 【解答】解:作AE⊥CD, ∵CD=BD?tan60°=∴AB=CD﹣CE=∴BC=21
m,
BD=63m.
BD,CE=BD?tan30°=BD,
BD,
CD=BD?tan60°=
答:乙建筑物的高度CD为63m.
第16页(共26页)
共分享92篇相关文档