当前位置:首页 > 医学统计学思考练习 - 图文
医学统计学思考练习
第1章 绪论思考与练习参考答案 一、最佳选择题
1. 研究中的基本单位是指 ( D )。
A.样本 B. 全部对象C.影响因素 D. 个体 E. 总体 2. 从总体中抽取样本的目的是( B )。
A.研究样本统计量 B. 由样本统计量推断总体参数
C.研究典型案例 D. 研究总体统计量 E. 计算统计指标
三、思考题
2. 某年级甲班、乙班各有男生50人。从两个班各抽取10人测量身高,并求其平均身高。如果甲班的平均身高大于乙班,能否推论甲班所有同学的平均身高大于乙班?为什么?
答:不能。因为,从甲、乙两班分别抽取的10人,测量其身高,得到的分别是甲、乙两班的一个样本。样本的平均身高只是甲、乙两班所有同学平均身高的一个点估计值。即使是按随机化原则进行抽样,由于存在抽样误差,样本均数与总体均数一般很难恰好相等。因此,不能仅凭两个样本均数高低就作出两总体均数熟高熟低的判断,而应通过统计分析,进行统计推断,才能作出判断。 3. 某地区有10万个7岁发育正常的男孩,为了研究这些7岁发育正常男孩的身高和体重,在该人群中随机抽取200个7岁发育正常的男孩,测量他们的身高和体重,请回答下列问题。 (1) (2) (3)
该研究中的总体是什么? 答:某地区10万个7岁发育正常的男孩。 该研究中的身高总体均数的意义是什么? 答:身高总体均数的意义是: 10万个7岁发育正常的男孩的平均身高。 该研究中的体重总体均数的意义是什么? 答:体重总体均数的意义是: 10万个7岁发育正常的男孩的平均体重 3. 参数是指( B )。
A.参与个体数 B. 描述总体特征的统计指标
C.描述样本特征的统计指标 D. 样本的总和 E. 参与变量数 4. 下列资料属名义变量的是( E )。
A.白细胞计数 B.住院天数
C.门急诊就诊人数 D.患者的病情分级 E. ABO血型 5.关于随机误差下列不正确的是( C )。
A.受测量精密度限制 B.无方向性 C. 也称为偏倚 D.不可避免 E. 增加样本含量可降低其大小
(4) 该研究中的总体均数与总体是什么关系? 答:总体均数是反映总体的统计学特征的指标。 (5)该研究中的样本是什么? 答:该研究中的样本是:随机抽取的200个7岁发育正常的男孩。 (宇传华 方积乾) 第2章 统计描述 思考与练习参考答案 一、最佳选择题 1. 编制频数表时错误的作法是( E )。 A. 用最大值减去最小值求全距 B. 组距常取等组距,一般分为10~15组
C. 第一个组段须包括最小值 D. 最后一个组段须包括最大值 E. 写组段,如“1.5~3,3~5, 5~6.5,?” 2. 描述一组负偏峰分布资料的平均水平时,适宜的统计量是( A )。 A. 中位数 B. 几何均数 C. 调和均数 D. 算术均数 E. 众数 3. 比较5年级小学生瞳距和他们坐高的变异程度,宜采用( A )。 A. 变异系数 B. 全距 C. 标准差
D. 四分位数间距 E. 百分位数P2.5与P97.5的间距 4. 均数
C. XB. S越大,XA. S越小,对样本中其他个体的代表性越好 对样本中其他个体的代表性越好 X越小,S越大 D. X越大,S越小 E. S必小于X
5. 计算乙肝疫苗接种后血清抗-HBs的阳转率,分母为( B )。 A. 阳转人数 B. 疫苗接种人数 C. 乙肝患者数 D. 乙肝病毒携带者数 E. 易感人数 6. 某医院的院内感染率为5.2人/千人日,则这个相对数指标属于( C )。
A. 频率 B. 频率分布 C. 强度 D. 相对比 E. 算术均数 7. 纵坐标可以不从0开始的图形为( D )。 A. 直方图 B. 单式条图 C. 复式条图 D. 箱式图 E. 以上均不可 X和标准差S的关系是( A )。 二、简答题
2. 举例说明频率和频率分布的区别和联系。 答:2005年某医院为了调查肺癌患者接受姑息手术治疗1年后的情况,被调查者150人,分别有30人病情稳定,66人处于进展状态,54人死亡。 当研究兴趣只是了解死亡发生的情况,则只需计算死亡率54/150=36%,属于频率指标。当研究者关心患者所有可能的结局时,则可以算出反映3种结局的频率分别为20%、44%、36%,它们共同构成所有可能结局的频率分布,是若干阳性率的组合。
两者均为“阳性率”,都是基于样本信息对总体特征进行估计的指标。不同的是:频率只是一种结局发生的频率,计算公式的分子是某一具体结局的发生数;频率分布则由诸结局发生的频率组合而成,计算公式的分子分别是各种可能结局的发生数,而分母则与频率的计算公式中分母相同,是样本中被观察的单位数之和。 3. 应用相对数时应注意哪些问题?
答:(1)防止概念混淆 相对数的计算是两部分观察结果的比值,根据这两部分观察结果的特点,就可以判断所计算的相对数属于前述何种指标。 (2)计算相对数时分母不宜过小 样本量较小时以直接报告绝对数为宜。(3)观察单位数不等的几个相对数,不能直接相加求其平均水平。 (4)相对数间的比较须注意可比性,有时需分组讨论或计算标准化率。 4. 常用统计图有哪些?分别适用于什么分析目的? 答:详见教材表2-20。
教材表2-20 常用统计图的适用资料及实施方法 图 形 条 图 直 方 图 百分条图 饼 图 线 图 半对数线图 散 点 图 箱 式 图 茎 叶 图 三、计算题 1. 某内科医生调查得到100名40~50岁健康男子总胆固醇(mg/dl),结果如下 227 199 235 235 246 163 207 190 155 220 167 209 273 208 224 208 190 210 202 178 231 259 203 203 171 186 190 234 225 199 197 248 217 207 226 238 253 149 201 206 259 174 180 181 175 266 200 186 199 193 196 236 189 203 194 278 214 224 202 222 197 246 277 195 210 209 199 161 172 181 213 220 174 197 247 234 193 255 184 214 138 232 209 257 174 199 186 189 172 216 185 198 156 172 244 249 167 230 195 235 适 用 资 料 组间数量对比 定量资料的分布 构成比 构成比
定量资料数值变动 定量资料发展速度 双变量间的关联 定量资料取值范围 定量资料的分布 实 施 方 法
用直条高度表示数量大小
用直条的面积表示各组段的频数或频率 用直条分段的长度表示全体中各部分的构成比 用圆饼的扇形面积表示全体中各部分的构成比 线条位于横、纵坐标均为算术尺度的坐标系
线条位于算术尺度为横坐标和对数尺度为纵坐标的坐标系 点的密集程度和形成的趋势,表示两现象间的相关关系 用箱体、线条标志四分位数间距及中位数、全距的位置 用茎表示组段的设置情形,叶片为个体值,叶长为频数 (1)编制频数表,绘制直方图,讨论其分布特征。 答:频数表见练习表2-1。根据直方图(练习图2-1),可认为资料为基本对称分布,其包络线见练习图2-2。 练习表2-1 某地100名40~50岁健康男子总胆因醇/(mg·dl) Frequency Percent Valid Percent 1.0 3.0 11.0 12.0 25.0 15.0 13.0 11.0 5.0 4.0 Cumulative Percent 1.0 4.0 15.0 27.0 52.0 67.0 80.0 91.0 96.0 100.0 -1Valid 130~ 145~ 160~ 175~ 190~ 205~ 220~ 235~ 250~ 265~280 Total 1 3 11 12 25 15 13 11 5 4 100 1.0 3.0 11.0 12.0 25.0 15.0 13.0 11.0 5.0 4.0 100.0 100.0
25252020Frequency15FrequencyMean = 207.41Std. Dev. = 29.82N = 1001401601802002202402602801510105500140160180200220240260280Mean = 207.41Std. Dev. = 29.82N = 100 练习图2-1 直方图 总胆固醇练习图2-2 包络线图 总胆固醇(2)根据(1)的讨论结果,计算恰当的统计指标描述资料的平均水平和变异度。 答:利用原始数据,求出算术均数X?207.4 mg/dl 和标准差S?29.8mg/dl。 (3)计算P25,P75和P95。 答:利用原始数据,求出P25=186.8 mg/dl,P75=229.3 mg/dl,P95=259.0 mg/dl。 2. 某地对120名微丝蚴血症患者治疗3个疗程后,用IFA间接荧光抗体试验测得抗体滴度如下,求抗体滴度的平均水平。 抗体滴度 例 数 1:5 5 1:10 16 1:20 27 1:40 34 1:80 22 1:160 13 1:320 3 利用上述频数表,得平均滴度为1:36.3。 3. 某地1975-1980年出血热发病和死亡资料如教材表2-21,设该地人口数在此6年间基本保持不变。 教材表2-21 某地6年间出血热的发病与死亡情况 年 份 1975 1976 1977 1978 1979 1980 试分析:(1)粗略判断发病率的变化情况怎样。 答:该地人口数在此6年间基本保持不变,发病人数在1979年前逐年上升,1980年略有下降。可以认为发病率大致呈上升趋势,1980年略有下降。 (2)病死率的变化情况怎样? 答: 病死率由各年度病死数除以发病数获得,病死率依次为12.5%、8.9%、7.4%、5.4%、3.0%和1.8%,呈逐年下降趋势。 (3)上述分析内容可用什么统计图绘制出来? 答:由于没有给出该地人口数,故不能计算发病率,可用普通线图表示发病数变化情况。病死率的下降情况可以用普通线图表示,下降速度则可以用半对数线图表示。 (4)评述该地区出血热防治工作的效果。 答:随着时间的推移,预防工作做得不好,治疗水平则逐年提高(体现在病死率下降)。 (张晋昕) 第3章 概率分布思考与练习参考答案 一、最佳选择题 1. 某资料的观察值呈正态分布,理论上有( C )的观察值落在范围内。
A. 68.27% B. 90% C. 95% D. 99% E. 45% 2. 正态曲线下,从均数
A.发病数 32 56 162 241 330 274 病死数 4 5 12 13 10 5 X?1.96S B.P2.5~P97.5 ?1X?1.96SC.lg(Y?1.64SY) D.lg?1(Y?1.96SY) E.P5~P95
4. 在样本例数不变的情况下,若( D ),则二项分布越接近对称分布。 A. 总体率?越大 B. 样本率p越大 C. 总体率?越小
D. 总体率?越接近0.5 E. 总体率?接近0.1或0.5
5. 铅作业工人周围血象点彩红细胞在血片上的出现数近似服从( D )。
A. 二项分布 B. 正态分布 C. 偏态分布
?到??1.64?的面积为( A )。
A. 45% B. 90% C. 95% D. 47.5% E. 99% 3. 若正常人的血铅含量X近似服从对数正态分布,则制定X的95%参考值范围,最好采用(其中
Y?lgX,
SY为Y的标准差)( C )。
D. Poisson分布 E. 对称分布
6. Poisson分布的均数?与标准差?的关系是( E )。
A.
??? B.
??? C.
??? D.
???
E.
二、思考题
1. 服从二项分布及Poisson分布的条件分别是什么?
???2
简答:二项分布成立的条件:①每次试验只能是互斥的两个结果之一;②每次试验的条件不变;③各次试验独立。 Poisson分布成立的条件:除二项分布成立的三个条件外,还要求试验次数2. 二项分布、Poisson分布分别在何种条件下近似正态分布?
简答: 二项分布的正态近似:当n较大,π不接近0也不接近1时,二项分布B(。 n,π)近似正态分布N(n?, n?(1??))n很大,而所关心的事件发生的概率?很小。
Poisson分布的正态近似:Poisson分布?(?),当?相当大时(≥20),其分布近似于正态分布。 三、计算题
1. 已知某种非传染性疾病常规疗法的有效率为80%,现对10名该疾病患者用常规疗法治疗,问至少有9人治愈的概率是多少? 解:对10名该疾病患者用常规疗法治疗,各人间对药物的反应具有独立性,且每人服药后治愈的概率均可视为0.80,这相当于作10次独立重复试验,即?=0.80,n=10的贝努利试验,因而治愈的人数X服从二项分布B(10, 0.80)。至少有9人治愈的概率为: 8kP(X?9)?1?P(X?9?1)=1??C100.8k(1?0.8)10?kk?0 ?1?0.6242?0.3758=37.58% 至少有9人治愈的概率是37.58%。 或者
以上是SPSS输出结果,得到均数(Mean)为174.766 cm,标准差(Std. Deviation)为4.150 9 cm。估计当年该市20岁男性青年中,身高在175.0~178.0 cm内的比例为25.956%,身高在175.0~178.0 cm内的约有29人。 估计当年该市95%的20岁男青年身高范围为166.63~182.90 cm,99% 的20岁男青年身高范围为164.06~185.48 cm。 由该市随机抽查1名20岁男青年,估计其身高超过180 cm的概率约为10%。 (祁爱琴 高 永 石德文) 第4章 参数估计 4.在已知均数为 一、最佳选择题 1.关于以0为中心的t分布,错误的是( E ) A. t分布的概率密度图是一簇曲线B.t分布的概率密度图是单峰分布C. 当??∞时,t分布?Z分布D.t分布的概率密度图以0为中心,左右对称 E. ?相同时,
9P(X?9)?P(X?9)?P(X?10)?C100.89(1?0.8)1?C10810(1?0.8)0?0.3785 100.?, 标准差为 ? 的正态总体中随机抽样, X???( B )的概率为5%。 A.1.96? B.1.96?X C.t0.05/2,?S D.t0.05/2,?SX t值越大,P值越大 E.0.05/2,?t?X ?X D. R E. 四分位
2.某指标的均数为X,标准差为S,由公式?X?1.96S,X?1.96S?5. ( C )小,表示用样本均数估计总体均数的精确度高。 A. CV B. S C. 计算出来的区间常称为( B )。 A. 99%参考值范围 B. 95%参考值范围 C. 99%置信区间 D. 95%置信区间 数间距 E. 90%置信区间 3.样本频率
6. 95%置信区间的含义为( C ): A. 此区间包含总体参数的概率是95% B. 此区间包含总体参数的可能性是95%
p与总体概率?均已知时,计算样本频率p的抽样误差的公式为
p?1?p? n?1 E. ( C )。
A. p?1?p? B. nC. “此区间包含总体参数”这句话可信的程度是95% D. 此区间包含样本统计量的概率是95% E. 此区间包含样本统计量的可能性是95%
C. ??1???n D. ??1???n?1??1???n?2 二、思考题
共分享92篇相关文档