云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 2020年中考数学第一轮复习暨2019年全国中考试题分类汇编 专题21 全等三角形(含解析)(003)

2020年中考数学第一轮复习暨2019年全国中考试题分类汇编 专题21 全等三角形(含解析)(003)

  • 62 次阅读
  • 3 次下载
  • 2025/7/3 21:25:40

②先同理得:BG=BD,计算BD的长,从而得BG的长,根据平行线分线段成比例

定理可得BM的长,根据线段的差可得结论. 【解答】解:(1)①DB=DG,理由是: ∵∠DBE绕点B逆时针旋转90°,如图1,

由旋转可知,∠BDE=∠FDG,∠BDG=90°, ∵四边形ABCD是正方形, ∴∠CBD=45°, ∴∠G=45°, ∴∠G=∠CBD=45°, ∴DB=DG; 故答案为:DB=DG; ②BF+BE=

BD,理由如下:

由①知:∠FDG=∠EDB,∠G=∠DBE=45°,BD=DG, ∴△FDG≌△EDB(ASA), ∴BE=FG,

∴BF+FG=BF+BE=BC+CG, Rt△DCG中,∵∠G=∠CDG=45°, ∴CD=CG=CB, ∵DG=BD=

BC,

即BF+BE=2BC=

BD;

(2)①如图2,BF+BE=

BD,

理由如下:在菱形ABCD中,∠ADB=∠CDB=∠ADC=×60°=30°,由旋转120°得∠EDF=∠BDG=120°,∠EDB=∠FDG,

17

在△DBG中,∠G=180°﹣120°﹣30°=30°, ∴∠DBG=∠G=30°, ∴DB=DG,

∴△EDB≌△FDG(ASA), ∴BE=FG,

∴BF+BE=BF+FG=BG,

过点D作DM⊥BG于点M,如图2,

∵BD=DG, ∴BG=2BM,

在Rt△BMD中,∠DBM=30°, ∴BD=2DM.

设DM=a,则BD=2a, DM=a, ∴BG=2a, ∴=,

∴BG=

BD,

∴BF+BE=BG=

BD; ②过点A作AN⊥BD于N,如图3,

18

Rt△ABN中,∠ABN=30°,AB=2, ∴AN=1,BN=∴BD=2BN=2∵DC∥BE, ∴

=,

, ,

∵CM+BM=2, ∴BM=,

由①同理得:BE+BF=BG=∴BG=

×

=6,

. BD,

∴GM=BG﹣BM=6﹣=

【点评】此题是四边形综合题,主要考查了全等三角形的判定和性质,平行线分线段成比例定理,正方形和菱形的性质,直角三角形30度的角性质等知识,本题证明△FDG≌△BDE是解本题的关键.

19

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

②先同理得:BG=BD,计算BD的长,从而得BG的长,根据平行线分线段成比例定理可得BM的长,根据线段的差可得结论. 【解答】解:(1)①DB=DG,理由是: ∵∠DBE绕点B逆时针旋转90°,如图1, 由旋转可知,∠BDE=∠FDG,∠BDG=90°, ∵四边形ABCD是正方形, ∴∠CBD=45°, ∴∠G=45°, ∴∠G=∠CBD=45°, ∴DB=DG; 故答案为:DB=DG; ②BF+BE=BD,理由如下: 由①知:∠FDG=∠EDB,∠G=∠DBE=45°,BD=DG, ∴△FDG≌△EDB(ASA), ∴BE=FG, ∴BF+FG=BF+BE=BC+CG, Rt△DCG中,∵∠G=∠CDG=45°, ∴CD=CG=CB, ∵DG=BD=BC, <

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com