当前位置:首页 > 【高考模拟】湖南省张家界市2018届高三第三次模拟考试数学(理)试题Word版含答案
当两直线的斜率分别为0和不存在时,则直线ST的方程为y?0,也过点??2?,0?; ?3?综上所述,直线ST过定点??2?,0?. 3??1?x?ex??a,∴a?x2?11?x?ex?.令f(x)?,
x2?121.(Ⅰ)∵?1?x?e?axx2则f'(x)??x?x2?2x?3??1?x?222x??x?1??2??ex,
ex???2?1?x2?令f'(x)?0,解得x?0,令f'(x)?0,解得x?0, 则函数f(x)在???,0?上单调递增,在?0,???上单调递减, ∴f(x)max?f(0)?1;
又当x?1时,f(x)?0,当x?1时,f(x)?0, 画出函数f(x)的图象.
要使函数f(x)的图象与y?a有两个不同的交点, 则0?a?1,即实数a的取值范围为?0,1?.
(Ⅱ)由(Ⅰ)知,x1?x2,不妨设x1?x2,则x1????,0?,x2??0,???. 要证x1?x2?0,只需证x2??x1.
∵x2?x1??0,???,且函数f(x)在?0,???上单调递减,
∴只需证f?x2??f??x1?,又f?x2??f?x1?,∴只需证f?x1??f??x1?,
即证
1?x1x11?x1?x1x?x,即证1?xe?1?xe?0对x????,0?恒成立. e?e????221?x11?x1x?x?xx令g(x)??1?x?e??1?x?e,x????,0?,则g'?x??xe?e,
??∵x????,0?,∴e?x?ex?0,∴g'?x??0恒成立, 则函数g(x)在???,0?上单调递减,∴g(x)?g(0)?0. 综上所述,x1?x2?0.
?x'?2xx2?y2?1,22.(Ⅰ)曲线C1:x?y?1经过伸缩变换?,可得曲线C2的方程为 4y'?y?22∴其参数方程为??x?2cos?(?为参数);
?y?sin?2曲线C3的极坐标方程为???2sin?,即???2?sin?,
2∴曲线C3的直角坐标方程为x2?y2??2y,即x??y?1??1,
2∴其参数方程为??x?cos?(?为参数).
?y??1?sin?(Ⅱ)设P?2cos?,sin??,则P到曲线C3的圆心?0,?1?的距离
d?4cos???sin??1?221?16???3sin??2sin??5??3?sin????,
3?3?22∵sin????1,1?,∴当sin??143时,dmax?. 33∴PQmax?dmax?r?4343?3. ?1?3323.(Ⅰ)由题意知,原不等式等价于
?x??1??1?x?1?x?1或或, ????2x?2?5?1?x2x?2?5?1?x2x?2?5?x?1???解得x??8或?或x?2,
综上所述,不等式f?x??x?1的解集为???,?8???2,???. (Ⅱ)当m??1时,则g?x??2x?2?5?x?1?3x?1?5,
此时g?x?的图象与x轴围成一个三角形,满足题意:
??3x?m?7,x??1?当m??1时,g?x??2x?2?5?x?m??x?m?3,?1?x?m,
?3x?m?3,x?m?则函数g?x?在???,?1?上单调递减,在??1,???上单调递增. 要使函数g?x?的图象与x轴围成一个三角形,
?3?g??1??m?4?0则?,解得?m?4;
2??g?m??2m?3?0综上所述,实数m的取值范围为?,4????1?.
?3?2??
共分享92篇相关文档