当前位置:首页 > 高考物理二轮复习第一部分专题二功和能专题跟踪检测(八)解题利器——“动能定理”的三个应用
专题跟踪检测(八) 解题利器——“动能定理”的三个应用
一、选择题(第1~5题为单项选择题,第6~9题为多项选择题) 1.(2017·南通模拟)弹弓是中国非物质文化遗产,《吴越春秋》中就有相关记载:“弩生于弓,弓生于弹…”。某同学利用一个“Y”形弹弓(如图所示),将一颗质量约为20 g的石头斜向上射出约30 m
远,最高点离地约10 m,空气阻力不计,g取10 m/s。则该同学对弹弓做功约为( )
A.1 J C.3 J
B.2 J D.4 J
2
解析:选C 设石头到达最高点时的速度为v,从最高点到落地石头做平抛运动,则12
有:x=vt,h=gt,由石头运动路径的过称性可得:v=x2
g30=× 2h2
10
m/s=2×10
152121
m/s,根据功能关系得该同学对弹弓做功为:W=mgh+mv=0.02×10×10 J+222×0.02×?
?15
?2
2?2
? J=3.125 J≈3 J,C正确。
?
2.一人用恒定的力F,通过图示装置拉着物体沿光滑水平面运动,A、B、C是其运动路径上的三个点,且AC=BC。若物体从A到
C、从C到B的过程中,人拉绳做的功分别为WFA、WFB,物体动能的
增量分别为ΔEA、ΔEB,不计滑轮质量和摩擦,下列判断正确的是( )
A.WFA=WFB ΔEA=ΔEB B.WFA>WFB ΔEA>ΔEB C.WFA
解析:选B 如图,F做的功等于F1做的功,物体由A向B运动的过程中,F1逐渐减小,又因为AC=BC,由W=F1l知WFA>WFB;对物体只有F做功,由动能定理知ΔEA>ΔEB,故B正确。
3.将一倾角为θ的斜面体固定在水平面上,在最高点A与最低点C之间有一点B,满足AB=2BC。将一小滑块从最高点由静止释放,经过一段时间后到达C点,且此时滑块的速度为零。已知滑块与AB、BC间的动摩擦因数分别为μ1、μ2。由以上条件判断下列关系式中正确的是( )
μ1+2μ2
A.tan θ=
3C.tan θ=2μ1-μ2
2μ1+μ2
B.tan θ=
3D.tan θ=2μ2-μ1
解析:选B 滑块从最高点由静止释放,恰好能滑动到斜面体的最低点,对滑块受力分析可知滑块受重力、支持力和滑动摩擦力作用。设斜面的总长为L,从A到C,由动能定
1 / 6
212μ1+μ2
理得mgLsin θ-μ1mgcos θ·L-μ2mgcos θ·L=0,解得tan θ=,B正
333确。
4.质量为m的物体以初速度v0沿水平面开始向左运动,起始点A与一轻弹簧O端相距s,如图所示。已知物体与水平面间的动摩擦因数为μ,物体与弹簧相碰后,弹簧的最大压缩量为x,则从开始碰撞到弹簧被压缩至最短,物体克服弹簧弹力所做的功为( )
12
A.mv0-μmg(s+x) 2C.μmgs
12
B.mv0-μmgx 2D.μmg(s+x)
解析:选A 设物体克服弹簧弹力所做的功为WT,则物体向左压缩弹簧过程中,弹簧弹力对物体做功为-WT,摩擦力对物体做功为-μmg(s+x),根据动能定理有-WT-μmg(s1212
+x)=0-mv0,所以,WT=mv0-μmg(s+x),故A正确。
22
5.如图,一滑块(可视为质点)以某一初速度冲上倾角为θ的固定斜面,然后沿斜面运动。已知滑块先后两次经过斜面A点速度大小分别为v1和v2,则滑块与斜面之间的动摩擦因数μ为( )
A.C.
v1-v2
tan θ v1+v2
v12-v22
tan θ
v12+v22
B.D.
v1-v2
cot θ v1+v2
v12-v22
cot θ
v12+v22
1212
解析:选C 滑块先后两次经过斜面A点时由动能定理得mv2-mv1=-μmgcos
22
θ·2x;当滑块第一次从A点到最高点时由动能定理得0-mv12=-mgxsin θ-μmgcos θ·x,联立解得μ=
v12-v22
tan θ,选项C正确。
v12+v22
12
6.(2017·宁波模拟)如图所示,轻质弹簧的一端固定在倾角为θ的光滑斜面底端,另一端与质量为m的物体连接。开始时用手按住物
体使弹簧处于压缩状态,放手后物体向上运动所能达到的最大速度为v。已知重力加速度为g,下列判断正确的是( )
A.物体达到最大速度v时,弹簧处于压缩状态 B.物体达到最大速度v时,其加速度为gsin θ
C.从释放到达到最大速度v的过程中,物体受到的合外力一直减小 1
D.从释放到达到最大速度v的过程中,弹簧弹力对物体做功为mv2
2
解析:选AC 对物体m应用牛顿第二定律可得:kx-mgsin θ=ma,随x减小,物体
2 / 6
向上的加速度逐渐减小,当kx=mgsin θ时,a=0,物体速度最大,A、C正确,B错误;12
由动能定理可知,弹簧弹力和重力所做的总功才等于mv,D错误。
2
7.物体在合外力作用下做直线运动的v -t图像如图所示。下列表述正确的是( )
A.在0~2 s内,合外力总是做负功 B.在1~2 s内,合外力不做功 C.在0~3 s内,合外力做功为零 D.在0~1 s内比1~3 s内合外力做功快
解析:选CD 由题图和动能定理可知在0~2 s内物体先加速后减速,合外力先做正功后做负功,A错;根据动能定理得0~3 s内合外力做功为零,1~2 s内合外力做负功,C对,B错;在0~1 s内比1~3 s内合外力做功快,D对。
8.如图所示,斜面AB和水平面BC是由同一板材上截下的两段,在B处用小圆弧连接。将铁块(可视为质点)从A处由静止释放后,它沿斜面向下滑行,进入平面,最终静止于P处。若从该板材上再截下
一段,搁置在A、P之间,构成一个新的斜面,再将铁块放回A处,并轻推一下使之沿新斜面向下滑动。关于此情况下铁块的运动情况,下列描述正确的是( )
A.铁块一定能够到达P点
B.铁块的初速度必须足够大才能到达P点 C.铁块能否到达P点与铁块质量有关 D.铁块能否到达P点与铁块质量无关
解析:选AD 设A距离地面的高度为h,铁块与板材之间的动摩擦因数为μ,对全过程运用动能定理有mgh-μmgcos θ·sAB-μmgsBP=0,得mgh-μmg(sABcos θ+sBP)=0,而sABcos θ+sBP=OP,即h-μOP=0,铁块在新斜面上有mgsin α-μmgcos αh-μOP
=ma,由sin α-μcos α=
AP
=0,可知铁块在新斜面上做匀速运动,与铁块的
质量m无关,铁块一定能够到达P点,选项A、D正确,B、C错误。
9.(2017·徐州模拟)如图所示,轻弹簧一端固定于O点,另一端与小滑块连接。把滑块放在光滑斜面上的A点,此时弹簧恰好水平。将滑块从A点由静止释放,经B点到达位于O点正下方的C点。当滑块运动到B点时,弹簧恰处于原长且与斜面垂直。已知弹
簧原长为L,斜面倾角θ小于45°,弹簧始终在弹性限度内,重力加速度为g。则在此过程中( )
3 / 6
A.滑块的加速度可能一直减小 B.滑块经过B点时的速度可能最大 C.滑块经过C点的速度大于
2gL
cos θ
D.滑块在AB过程中动能的增量比BC过程小
解析:选AC 滑块下滑过程中受重力、斜面对它的支持力、弹簧弹力。在B点弹簧恰处于原长且与斜面垂直,则滑块从A到B合外力变小且沿斜面向下,做加速度变小的加速运动。滑块从B到C弹簧弹力变大,此过程中有可能合力一直沿斜面向下,那么滑块继续做加速度变小的加速运动;也有可能合力有向上的阶段,那么滑块在此阶段加速度先变小后变大,即做先加速后减速的运动,故A正确,B错误;弹簧原长为L,斜面倾角θ小于45°,由几何关系可知,A到B下降的高度差大于B到C的高度差,又A到B弹簧弹力对滑块做正功B到C做负功,根据动能定理A到B阶段动能增加量大于B到C阶段;设整个L12
过程弹力做功为W,到达C点时速度为v,则由动能定理:mg+W=mv,可得滑块
cos θ2经过C点的速度大于
二、非选择题
10.(2017·镇江一模)如图所示的装置由水平弹簧发射器及两个轨道组成:轨道Ⅰ是光滑轨道AB,AB间高度差h1=0.20 m;轨道Ⅱ由AE和螺旋圆形EFG两段光滑轨道和粗糙轨道GB平滑连接而成,且A点与EFG段最高处F点等高。轨道Ⅱ最低点与AF所在直线的高度差h2=0.40 m。当弹簧压缩量为d时,恰能使质量m=0.05 kg的滑块沿轨道Ⅰ上升到
2gL
,故C正确,D错误。
cos θ
B点,当弹簧压缩量为2d时,恰能使滑块沿轨道Ⅱ上升到B点,滑块两次到达B点处均被
装置锁定不再运动。已知弹簧弹性势能Ep与弹簧压缩量x的平方成正比,弹簧始终处于弹性限度范围内,不考虑滑块与发射器之间的摩擦,重力加速度g=10 m/s。
2
(1)当弹簧压缩量为d时,求弹簧的弹性势能及滑块离开弹簧瞬间的速度大小;
(2)求滑块经过F点时对轨道的压力大小;
(3)求滑块通过GB段过程中克服摩擦力所做的功。
解析:(1)当弹簧压缩量为d时,恰能使质量m=0.05 kg的滑块沿轨道Ⅰ上升到B 点,所以根据能量转化和守恒定律得:
弹簧弹性势能Ep1=mgh1
解得:Ep1=0.1 J
对滑块由静止到离开弹簧过程由能量转化和守恒定律得:
4 / 6
共分享92篇相关文档