当前位置:首页 > 10个导数题(极值点的偏移)
极值点偏移的问题
1.已知f(x)?lnx?ax,(a为常数)()若函数1f(x)在x?1处的切线与x轴平行,求a的值;1(2)当a?1时,试比较f(m)与f()的大小;m(3)f(x)有两个零点x1,x2,证明:x1?x2>e2
变式:已知函数f(x)?lnx?ax2,a为常数。(1)?讨论f(x)的单调性;(2)若有两个零点x1,x2,,试证明:x1?x2>e
πx2.已知f(x)?x2+ax?sin,x?(0,1);2(1)若f(x)在定义域内单调递增,求a的取值范围;(2)当a=-2时,记f(x)取得极小值为f(x0)若f(x1)?f(x2),求证x1?x2>2x0
13.已知f(x)?lnx-ax2?x,(a?R)2(1)若f(1)=0,求函数f(x)的最大值;(2)令g(x)=f(x)-(ax-1),求函数g(x)的单调区间;(3)若a=-2,正实数x1,x2,满足(fx1)?f?x2??x1x2?0,证明:x1?x2?5?12
4.设a>0,函数f(x)=lnx-ax,g(x)=lnx-(1)证明:当x?1时,g(x)>0恒成立;2(x?1)x?1
(2)若函数f(x)无零点,求实数a的取值范围;(3)若函数f(x)有两个相异零点x1,x2,求证:x1x2?e2
5.已知f(x)?x?2a?alnx,常数a?R。()求1f(x)的单调区间;(2)f(x)有两个零点x1,x2,且x1?x2;(i)指出a的取值范围,并说明理由;(ii)求证:x1?x2?8a3
6.设函数f(x)?ex?ax?a(a?R),其图象与x轴交于A(x1, 0),B(x2,0)两点,且x1<x2.
(1)求a的取值范围; (2)证明:f??x1x2?0(f?(x)为函数f(x)的导函数);
?(3)设点C在函数y?f(x)的图象上,且△ABC为等腰直角三角形,记求(a?1)(t?1)的值.
【解】(1)f?(x)?ex?a.
x2?1?t,x1?1若a≤0,则f?(x)?0,则函数f(x)是单调增函数,这与题设矛盾.所以a?0,令f?(x)?0,则x?lna.
当x?lna时,f?(x)?0,f(x)是单调减函数;x?lna时,f?(x)?0,f(x)是单调增函数;
于是当x?lna时,f(x)取得极小值.
因为函数f(x)?ex?ax?a(a?R)的图象与x轴交于两点A(x1,0),B(x2,0)(x1<x2), 所以f(lna)?a(2?lna)?0,即a?e2.. 此时,存在1?lna,f(1)?e?0;
存在3lna?lna,f(3lna)?a3?3alna?a?a3?3a2?a?0,
lna)及(lna,??)上的单调性及曲线在R上不间断,可知a?e2为所又由f(x)在(??,求取值范围.
xx2x1??e1?ax1?a?0,e?e(2)因为?x 两式相减得a?.
2x?xe?ax?a?0,21??2x1?x22记
x2?x1x?x?s(s?0),则f?12?e22??x1?x22??e?e?e2s?(es?e?s)???,设x2?x12sx2x1g(s)?2s?(es?e?s),则g?(s)?2?(es?e?s)?0,所以g(s)是单调减函数,
则有g(s)?g(0)?0,而ex1?x222s?0,所以f??x1?x2?0. 2?又f?(x)?ex?a是单调增函数,且
x1?x2?x1x2 2所以f??x1x2?0.
?(3)依题意有exi?axi?a?0,则a(xi?1)?exi?0?xi?(. 1i?1,2)于是ex1?x22?a(x1?1)(x2?1),在等腰三角形ABC中,显然C = 90°,所以
x0?x1?x2?(x1,x2),即y0?f(x0)?0, 2由直角三角形斜边的中线性质,可知
x2?x1??y0, 2x1?x2x2?x1x?x所以y0??0,即e2?a(x1?x2)?a?21?0,
222所以a(x1?1)(x2?1)?a(x1?x2)?a?2x2?x1?0, 2(x2?1)?(x1?1)?0.
2即a(x1?1)(x2?1)?a[(x1?1)?(x2?1)]?2x2?1?1x2?1ax2?1x1?1因为x1?1?0,则a?1???0,
x1?12x1?12??又x2?1?t,所以at?a(1?t2)?1(t2?1)?0,
22x1?1即a?1?2,所以(a?1)(t?1)?2.
t?17.已知函数f(x)?xc(x?R)
(Ⅰ)求函数f(x)的单调区间和极值;
(Ⅱ)已知函数y?g(x)的图象与函数y?f(x)的图象关于直线x?1对称,证明当
?xx?1时,f(x)?g(x)
(Ⅲ)如果x1?x2,且f(x1)?f(x2),证明x1?x2?2 (Ⅰ)解:f’(x)?(1?x)e?x 令f’(x)=0,解得x=1
当x变化时,f’(x),f(x)的变化情况如下表 X f’(x) f(x) (??,1) + 1 0 极大值 (1,??) - 所以f(x)在(??,1)内是增函数,在(1,??)内是减函数。 函数f(x)在x=1处取得极大值f(1)且f(1)=
1 ex?2(Ⅱ)证明:由题意可知g(x)=f(2-x),得g(x)=(2-x)e令F(x)=f(x)-g(x),即F(x)?xe?x?(x?2)ex?2 于是F'(x)?(x?1)(e2x?2?1)e?x
当x>1时,2x-2>0,从而e2x-2?1?0,又e?x?0,所以F’(x)>0,从而函数F(x)在[1,+∞)是增函数。
又F(1)=e?e?0,所以x>1时,有F(x)>F(1)=0,即f(x)>g(x). Ⅲ)证明:(1)
若(x1?1)(x2?1)?0,由(?)及f(x1)?f(x2),则x1?x2?1.与x1?x2矛盾。 (2)若(x1?1)(x2?1)?0,由(?)及f(x1)?f(x2),得x1?x2.与x1?x2矛盾。
根据(1)(2)得(x1?1)(x2?1)?0,不妨设x1?1,x2?1.
由(Ⅱ)可知,f(x2)>g(x2),则g(x2)=f(2-x2),所以f(x2)>f(2-x2),从而
-1-1f(x1)>f(2-x2).因为x2?1,所以2?x2?1,又由(Ⅰ)可知函数f(x)在区间(-∞,1)
内是增函数,所以x1>2?x2,即x1?x2>2.
8. 已知函数f(x)?lnx?ax2?(2?a)x (I)讨论f(x)的单调性;(II)设a>0,证明:当0?x?1时,f(1?x)?f(1?x); aaa(III)若函数y= f(x)的图像与x轴交于A、B两点,线段AB中点的横坐标为x0,证明:f′(x0)<0
9. 已知函数f(x)?1?xxe.(Ⅰ)求f(x)的单调区间; 21?x(Ⅱ)证明:当f(x1)?f(x2) (x1?x2)时,x1?x2?0
2(?1?1?x)ex(?1?x2)?(1?x)ex?2xx?3?x?2x?xe?. 解: (Ⅰ) f'(x)?(1?x2)2(1?x2)2???22?4?2?0?当x?(-?,0]时,f'(x)?0,y?f(x)单调递增;
当x?[0,??)时,f'(x)?0,y?f(x)单调递减.
共分享92篇相关文档