云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 2020-2021学年江苏省南通市、扬州市、泰州市高考数学二模试卷及答案解析

2020-2021学年江苏省南通市、扬州市、泰州市高考数学二模试卷及答案解析

  • 62 次阅读
  • 3 次下载
  • 2025/6/3 10:35:54

∴,

解得:

∴a+b=, 故答案为: 7.设函数2 .

【考点】正弦函数的图象. 【分析】根据题意,得出【解答】解:∵函数∴

<ωx+

<ωπ+

ω+

=

+2kπ,k∈Z,求出ω的值即可. ,且0<x<π,ω>0,

(0<x<π),当且仅当

时,y取得最大值,则正数ω的值为

又当且仅当∴∴

<ωx+ω+

=

时,y取得最大值, <ωπ+,

解得ω=2. 故答案为:2.

8.在等比数列{an}中,a2=1,公比q≠±1.若a1,4a3,7a5成等差数列,则a6的值是 【考点】等比数列的通项公式.

【分析】由题意和等差数列可得q的方程,解方程由等比数列的通项公式可得. 【解答】解:∵在等比数列{an}中a2=1,公比q≠±1,a1,4a3,7a5成等差数列,

∴8a3=a1+7a5,∴8×1×q=+7×1×q,整理可得7q﹣8q+1=0, 分解因式可得(q﹣1)(7q﹣1)=0,解得q=或q=1, ∵公比q≠±1, ∴q=,∴a6=a2q=故答案为:

9.在体积为

【考点】棱锥的结构特征.

【分析】由已知求得△BCD的面积,再由面积公式求得sinB,进一步求得cosB,再由余弦定理求得CD长度. 【解答】解:如图,

的四面体ABCD中,AB⊥平面BCD,AB=1,BC=2,BD=3,则CD长度的所有值为

2

42

2

2

2

342

在四面体ABCD中,∵AB⊥平面BCD,∴AB为以BCD为底面的三棱锥的高, ∵

,AB=1,∴由

,得,得sinB=

2

2

,∴cosB=

又BC=2,BD=3,得

2

当cosB=时,CD=2+3﹣2×2×3×=7,则CD=当cosB=﹣时,CD=2+3﹣2×2×3×(∴CD长度的所有值为故答案为:

. ,

2

2

2

)=19,则CD=

10.在平面直角坐标系xOy中,过点P(﹣2,0)的直线与圆x+y=1相切于点T,与圆

相交于点R,S,且PT=RS,则正数a的值为 4 .

【考点】直线与圆的位置关系.

【分析】设过点P(﹣2,0)的直线方程为y=k(x+2),由直线与圆相切的性质得k=妨取k=结果.

【解答】解:设过点P(﹣2,0)的直线方程为y=k(x+2), ∵过点P(﹣2,0)的直线与圆x+y=1相切于点T, ∴PT=∵直线y=

=1,解得k==

,∴PT=RS=(x+2)与圆

,不妨取k=,

相交于点R,S,且PT=RS,

2

2

2

2

,不

,由勾股定理得PT=RS=,再由圆心(a,)到直线y=(x+2)的距离能求出

∴圆心(a,)到直线y=(x+2)的距离d==,

由a>0,解得a=4. 故答案为:4.

11.已知f(x)是定义在R上的偶函数,且对于任意的x∈[0,+∞),满足f(x+2)=f(x),若当x∈[0,2)时,f(x)=|x﹣x﹣1|,则函数y=f(x)﹣1在区间[﹣2,4]上的零点个数为 7 . 【考点】函数零点的判定定理.

2

【分析】如图所示,y=g(x)=f(x)﹣1=,再利用f(x+2)

=f(x),可得x∈[2,4]上的图象.由函数f(x)是R上的偶函数,可得g(x)也是R上的偶函数,结合图象即可得出零点个数.

【解答】解:如图所示,y=g(x)=f(x)﹣1=,

再利用f(x+2)=f(x),可得x∈[2,4]上的图象.

由函数f(x)是R上的偶函数,可得g(x)也是R上的偶函数,利用偶函数的性质可得x∈[﹣2,0)上的图象.

x∈[0,2)时,g(0)=g(1)=0,

x∈[2,4]时,g(2)=g(4)=g(0)=0,g(3)=g(1)=0. x∈[﹣2,0)时,g(﹣2)=g(2)=0,g(﹣1)=g(1)=0. 指数可得:函数g(x)共有7个零点. 故答案为:7.

12.如图,在同一平面内,点A位于两平行直线m,n的同侧,且A到m,n的距离分别为1,3.点B、C分别在m、n上,

,则

的最大值是

【考点】平面向量数量积的运算.

【分析】建立如图所示的坐标系,得到点A、B、C的坐标,由类讨论,利用二次函数的性质求得

的最大值.

,求得a+b=±3,分

【解答】解:由点A位于两平行直线m,n的同侧,且A到m,n的

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

∴, 解得: ∴a+b=, 故答案为: 7.设函数2 . 【考点】正弦函数的图象. 【分析】根据题意,得出【解答】解:∵函数∴<ωx+<ωπ+, ω+=+2kπ,k∈Z,求出ω的值即可. ,且0<x<π,ω>0, (0<x<π),当且仅当时,y取得最大值,则正数ω的值为 又当且仅当∴∴<ωx+ω+=时,y取得最大值, <ωπ+, <, 解得ω=2. 故答案为:2. 8.在等比数列{an}中,a2=1,公比q≠±1.若a1,4a3,7a5成等差数列,则a6的值是 【考点】等比数列的通项公式. 【分析】由

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com