当前位置:首页 > 2018高考数学复习:第3章导数第2节导数的应用(3)(含解析)
(2)若0?a?1,b?1,函数g?x??f?x??2有且只有1个零点,求ab的值.
1?1?x10.解析 (1)①f?x??2x???,由f?x??2可得2?x?2,
2?2?则2xx??2?2?2x?1?0,即?2x?1??0,则2x?1,解得x?0;
211?1?1????2xm?2x?x??6恒成立,即?2x?x??2…②由题意得2?2x…m?2x?x??6恒成22?2?2????立. 令t?2?x211xxt…22??2, 2?0,则由,可得xx22t2?44?t?恒成立, mt?6恒成立,即m?此时t?2…tt22时t?因为t…44…2t??4,当且仅当t?2时等号成立,因此实数m的最大值为4. ttxxxx??lnab??????, (2)g?x??f?x??2?ax?bx?2,g??x??alna?blnb?alnb???lnb?a???b?b?lna由0?a?1,b?1可得?1,令h?x?????,则h?x?单调递增,
aalnb??而lna?0,lnb?0,因此x0?logb??xx?lna??时h?x0??0. lnb?a?因此x????,x0?时,h?x??0,alnb?0,则g??x??0;
xx??x0,???时,h?x??0,alnb?0,则g??x??0.
则g?x?在???,x0?递减,?x0,???递增. 解法一:下证x0?0. ①若x0?0,则x0?x0?x??0,于是g?0??g?0??0, 2?2?loga2又loga2?0且g?loga2??aloga2?bloga2?2?a因此连续函数g?x?在以由
?2?0,
x0与loga2为端点的区间上存在零点,不妨记为x1. 2x0?0且loga2?0可知x1?0,这与“0是函数g?x?的唯一零点”相矛盾. 2②若x0?0,仿照①可得到,
连续函数g?x?在以
x0?0与logb2?0为端点的区间上存在大于0的零点x2,也相矛盾. 2lna?lna??0??1, ,即?lnblnb?a?③综合①②可知x0?0,即logb??即lna?lnb?0,因此ln?ab??0,则ab?1.
评注 解法二:(也可以g?x0?作为研究对象)因此g?x?最小值为g?x0?. ①若g?x0??0,x?loga2时,a?axloga2?2,bx?0,则g?x??0;
x?logb2时,ax?0,bx?blogb2?2,则g?x??0;
因此x1?loga2且x1?x0时,g?x1??0,因此g?x?在?x1,x0?有零点,
x2?logb2且x2?x0时,g?x2??0,因此g?x?在?x0,x2?有零点,
则g?x?至少有两个零点,与条件矛盾;
②若g?x0?…0,由函数g?x?有且只有1个零点,g?x?最小值为g?x0?, 可得g?x0??0,由g?0??a0?b0?2?0,因此x0?0, 所以logb??lna?lna???1, ?0,即?lnblnb?a?亦即lna?lnb?0,因此ln?ab??0,则ab?1.
11.(2016全国乙文21)已知函数f?x???x?2?ex?a?x?1?. (1)讨论f?x?的单调性;
(2)若f?x?有两个零点,求a的取值范围.
11.解析 (1)由题意f??x???x?1?ex?2a?x?1?=?x?1?ex?2a.
2??0,即a…0时,e?2a?0恒成立.令f??x??0,则x?1, ①当2a…x所以f?x?的单调增区间为?1,???.同理可得f?x?的单调减区间为???,1?. ②当2a?0,即a?0时,令f??x??0,则x?1或ln??2a?. (ⅰ)当ln??2a??1,即a??e时,令f??x??0,则x?1或x?ln??2a?, 2所以f?x?的单调增区间为???,1?和ln??2a?,??.同理f?x?的单调减区间为
???1,ln??2a??;
(ⅱ)当ln??2a??1,即a??xe时, 21当x?1时,x?1?0,e?2a?e?e?0,所以f??x?…0.同理x?1时,f??x??0. 故f?x?的单调增区间为???,???; (ⅲ)当ln??2a??1,即?e?a?0时.令f??x??0,则x?ln??2a?或x?1, 2所以f?x?的单调增区间为??,ln??2a?和?1,???,同理f?x?的单调减区间为
???ln??2a?,1?.
综上所述,当a??e时,f?x?的单调增区间为???,1?和?ln??2a?,???,单调减区间为2?1,ln??2a??;
当a??当?e时,f?x?的单调增区间为???,???; 2e?a?0时,f?x?的单调增区间为???,ln??2a??和?1,???,单调减区间为2?ln??2a?,1?;
0时,f?x?的单调增区间为?1,???,单调减区间为???,1?. 当a…(2)解法一(直接讨论法):易见f?1???e?0,如(1)中讨论,下面先研究(ⅰ)(ⅱ)(ⅲ)三种情况.
e时,由f?x?单调性可知,f?ln??2a???f?1??0,故不满足题意; 2e②当a??时,f?x?在???,???上单调递增,显然不满足题意;
2e③当??a?0时,由f?x?的单调性,可知f?1??f?ln??2a??,
2①当a??且fln??2a??ln??2a??2不满足题意;
??????2a??a?ln??2a??1?2?a??ln??2a??2???a?0,故
20, 下面研究a…当a?0时,f?x???x?2?ex,令f?x??0,则x?2,因此f?x?只有1个零点,故舍去;
当a?0时,f?1???e?0,f?2??a?0,所以f?x?在?1,???上有1个零点;
(i)当0?a?1时,由lna?0,而22a3a???a??a?a?a?f?ln???ln?2??a?ln?1??a?ln2?ln??0,
222???2??2?2?2?所以f?x?在???,1?上有1个零点;
(i i)当a?1时,由?2?0,而f??2????4?e所以f?x?在???,1?上有1个零点;
可见当a?0时f?x?有两个零点.所以所求a的取值范围为?0,???. 解法二(分离参数法):显然x?1不是f?x?的零点, 当x?1时,由f?x??0,得a??2?9a?9a?4?0, e22?x?x?1?xe?x?1?. 2设g?x??2?x?x?1?2ex?x?1?,则问题转化为直线y?a与g?x?图像有两个交点,
2?ex?x?1???x?2??1???,
对g?x?求导得g??x??4?x?1?所以g?x?在???,1?单调递增,在?1,???单调递减. ①当a?0时,若x????,1?,g?x??0,直线y?a与g?x?图像没有交点,
若x??1,???,g?x?单调递减,直线y?a与g?x?图像不可能有两个交点, 故a?0不满足条件;
?13?1??,? ,则g?x1??②若a?0时,取x1?min?1?…a, 2a2???x1?1???而g?2??0?a,结合g?x?在?1,???单调递减, 可知在区间?x1,2?上直线y?a与g?x?图像有一个交点,
?22???,0?,x3??取x2?min?1?,
aa????则g?x2?厖22?x2?1?a,g?x3??2?x32??a, 22x3x3
共分享92篇相关文档