当前位置:首页 > 垂直平分线与角平分线典型题
线段的垂直平分线与角平分线(1)
知识要点详解
1、线段垂直平分线的性质
(1)垂直平分线性质定理:线段垂直平分线上的点到这条线段两个端点的距离相等.
定理的数学表示:如图1,已知直线m与线段AB垂直相交于点D,且AD=BD,若点C在直线m上,则AC=BC.
定理的作用:证明两条线段相等 (2)线段关于它的垂直平分线对称. 2、线段垂直平分线性质定理的逆定理 (1)线段垂直平分线的逆定理:
ACmD图1BC到一条线段两个端点距离相等的点在这条线段的垂直平分线上. 定理的数学表示:如图2,已知直线m与线段AB垂直相交于点D,且AD=BD,若AC=BC,则点C在直线m上.
定理的作用:证明一个点在某线段的垂直平分线上. 3、关于三角形三边垂直平分线的定理 (1)关于三角形三边垂直平分线的定理:
AmD图2B三角形三边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等. 定理的数学表示:如图3,若直线i,j,k分别是△ABC三边AB、BC、CA的垂直平分线,则直线i,j,k相交于一点O,且OA=OB=OC.
定理的作用:证明三角形内的线段相等.
(2)三角形三边垂直平分线的交点位置与三角形形状的关系:
若三角形是锐角三角形,则它三边垂直平分线的交点在三角形内部;若
1
三角形是直角三角形,则它三边垂直平分线的交点是其斜边的中点;若三角形是钝角三角形,则它三边垂直平分线的交点在三角形外部.反之,三角形三边垂直平分线的交点在三角形内部,则该三角形是锐角三角形;三角形三边垂直平分线的交点在三角形的边上,则该三角形是直角三角形;三角形三边垂直平分线的交点在三角形外部,则该三角形是钝角三角形. 经典例题:
例1 如图1,在△ABC中,BC=8cm,AB的垂直平分线交AB于点D,交边AC于点E,△BCE的周长等于18cm,则AC的长等于( ) A.6cm B.8cm 针对性练习:
已知:1)如图,AB=AC=14cm,AB的垂直平分线交AB于点D,交AC于点E,
如果△EBC的周长是24cm,那么BC=
2) 如图,AB=AC=14cm,AB的垂直平分线交AB于点D,交AC于点E,
如果BC=8cm,那么△EBC的周长是
3) 如图,AB=AC,AB的垂直平分线交AB于点 D,交AC于点E,如果∠A=28 度,那么∠EBC是
例2. 已知: AB=AC,DB=DC,E是AD上一点,求证:BE=CE。
B D E A C.10cm D.12cm
C
2
针对性练习:
已知:在△ABC中,ON是AB的垂直平分线,OA=OC 求证:点O在BC的垂直平分线
B
O
N
A
C
例3. 在△ABC中,AB=AC,AB的垂直平分线与边AC所在的直线相交所成锐角为50°,△ABC的底角∠B的大小为_______________。 课堂笔记: 针对性练习:
1. 在△ABC中,AB=AC,AB的垂直平分线与AC所在直线相交所得的锐角为40°,则底角B的大小为________________。
例4、如图8,已知AD是△ABC的BC边上的高,且∠C=2∠B,
求证:BD=AC+CD.
证明:在BD上取一点E,使DE=DC,连接AE,则AE=AC, 课堂练习:
1.如图,AC=AD,BC=BD,则( )
A.CD垂直平分AD B.AB垂直平分CD C.CD平分∠ACB D.以上结论均不对
2.如果三角形三条边的中垂线的交点在三角形的外部, 那么,这个三角形是( )
B图8ADC 3
A.直角三角形 B.锐角三角形 C.钝角三角形 D.等边三角形 3.下列命题中正确的命题有( )
①线段垂直平分线上任一点到线段两端距离相等;②线段上任一点到垂直平分线两端距离相等;③经过线段中点的直线只有一条;④点P在线段AB外且PA=PB,过P作直线MN,则MN是线段AB的垂直平分线;⑤过线段上任一点可以作这条线段的中垂线. A.1个 B.2个 C.3个 D.4个
4.△ABC中,AB的垂直平分线交AC于D,如果AC=5 cm,BC=4cm,那么△DBC的周长是( )
A.6 cm B.7 cm C.8 cm D.9 cm
5.已知如图,在△ABC中,AB=AC,O是△ABC内一点,且OB=OC, 求证:AO⊥BC.
6.如图,在△ABC中,AB=AC,∠A=120°,AB的垂直平分线 MN分别交BC、AB于点M、N. 求证:CM=2BM.
课后作业:
1. 如图7,在△ABC中,AC=23,AB的垂直平分线交AB于点D,交BC于点E,△ACE的周长为50,求BC边的长.
2. 已知:如图所示,∠ACB,∠ADB都是直角,且AC=AD,P是AB上任意
BDA图7EC 4
共分享92篇相关文档