云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 《高考调研》衡水重点中学同步精讲精练(数学必修5)课时作业15

《高考调研》衡水重点中学同步精讲精练(数学必修5)课时作业15

  • 62 次阅读
  • 3 次下载
  • 2025/6/1 0:10:01

1.已知Sn是数列{an}的前n项和,Sn=pn(p∈R,n∈N*),那么数列{an}( )

A.是等比数列

B.当p≠0时是等比数列 C.当p≠0,p≠1时是等比数列 D.不是等比数列 答案 D

解析 利用等比数列的概念判断.

由Sn=pn(n∈N*),有a1=S1=p,并且当n≥2时,an=Sn-Sn-1

=pn-pn-1=(p-1)pn-1.故a2=(p-1)p.

??p-1≠0,

因此数列{a}成等比数列??a

??a=p?n≥2?.

n

nn-1

p≠0,

a2?p-1?p

而a=p=p-1.

1

故满足此条件的实数p是不存在的,故本题应选D.

讲评 (1)此题易得出错误的判断,排除错误的办法是熟悉数列{an}an成等比数列的条件:an≠0(n∈N*),还要注意对任意n∈N*,n≥2,an-1都为同一常数.

(2)判断{an}是否为等比数列,由Sn=pn知当n≥2时,an=Sn-Sn

-1

=pn-pn-1=(p-1)·pn-1,乍看只要p≠0,p-1≠0就是等比数列,

其实不然,因为a1=S1=p,并不满足an;故无论p取何实数{an}都不可能是等比数列.

2.(2010·江西)等比数列{an}中,|a1|=1,a5=-8a2,a5>a2,则an=( )

A.(-2)n-1 C.(-2)n 答案 A

解析 记数列{an}的公比为q,由a5=-8a2,得a1q4=-8a1q,即q=-2.∵a5>a2,∴a5>0,a2<0,∴a1>0,又由|a1|=1,得a1=1,故an=a1qn-1=(-2)n-1.

3.(2013·广东)设数列{an}是首项为1,公比为-2的等比数,则a1+|a2|+|a3|+|a4|=________.

答案 15

解析 由数列{an}首项为1,公比q=-2,则an=(-2)n-1,a1=1,a2=-2,a3=4,a4=-8,则a1+|a2|+|a3|+|a4|=1+2+4+8=15.

4.已知数列{an}满足:lgan=3n+5,试用定义证明{an}是等比数列.

解析 ∵lgan=3n+5,∴an=103n+5,an+1=103(n+1)+5.

an+1

∴a=103,∴{an}是以108为首项以103为等比的等比数列.

n

B.-(-2)n-1 D.-(-2)n

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

1.已知Sn是数列{an}的前n项和,Sn=pn(p∈R,n∈N*),那么数列{an}( ) A.是等比数列 B.当p≠0时是等比数列 C.当p≠0,p≠1时是等比数列 D.不是等比数列 答案 D 解析 利用等比数列的概念判断. 由Sn=pn(n∈N*),有a1=S1=p,并且当n≥2时,an=Sn-Sn-1=pn-pn-1=(p-1)pn-1.故a2=(p-1)p. ??p-1≠0,因此数列{a}成等比数列??a??a=p?n≥2?.nnn-1p≠0, a2?p-1?p而a=p=p-1. 1故满足此条件的实数p是不存在的,故本题

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com