当前位置:首页 > 全等三角形章节复习学案
探究结果总结:
斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边”和“HL”). [师]你能用几种方法说明两个直角三角形全等呢?
[生]直角三角形也是三角形,一般来说,可以用“定义、SSS、SAS、?ASA?、?AAS”这五种方法,但它又具有特殊性,还可以用“HL”的方法判定.
[师]很好,两直角三角形中由于有直角相等的条件,所以判定两直角三角形全等只须找两个条件,但这两个条件中至少要有一个条件是一对对应边才行.
四、例题:
[例1]如图,AC⊥BC,BD⊥AD,AC=BD. 求证:BC=AD.
分析:BC和AD分别在△ABC和△ABD中,所以只须证明△ABC≌△BAD,?就可以证明BC=AD了. 证明:∵AC⊥BC,BD⊥AD ∴∠D=∠C=90° 在Rt△ABC和Rt△BAD中
??AB?AB∴Rt△ABC≌Rt△BAD(HL) ∴BC=AD.
?AC?BD [例2]有两个长度相等的滑梯,左边滑梯的高AC?与右边滑梯水平方向的长度DF相等,两滑梯倾斜角∠ABC和∠DFE有什么关系?
[师生共析]∠ABC和∠DFE分别在Rt△ABC和Rt△DEF中,?已知条件中这两个三角形又有一些对应的等量关系,所以可以证明这两个三角形全等得到对应角相等,显然,可以看出这两个角不相等,它们又是直角三角形中的锐角,是不是互余呢?我们试试看. 证明:在Rt△ABC和Rt△DEF中 又∵∠DEF+∠DFE=90°
??BC?EF ∴∠ABC+∠DFE=90° 所以Rt△ABC≌Rt△DEF(HL) ∴∠ABC=∠DEF
?AC?DF11.2.4 三角形全等判定(4) 一、复习导入 二、尝试活动 探索新知 三、应用新知 解决问题 四、总结提高 即两滑梯的倾斜角∠ABC与∠DFE互余. 五、课时小结
至此,我们有六种判定三角形全等的方法: 1.全等三角形的定义 2.边边边(SSS) 3.边角边(SAS) 4.角边角(ASA) 5.角角边(AAS) 6.HL(仅用在直角三角形中)
六、布置作业 【教学反思】
- 17 -
共分享92篇相关文档