当前位置:首页 > 六年级奥数-行程问题(一).教师版
智尚学业
行程问题(一)
知识点拨: 发车问题
(1)、一般间隔发车问题。用3个公式迅速作答; 汽车间距=(汽车速度+行人速度)×相遇事件时间间隔 汽车间距=(汽车速度-行人速度)×追及事件时间间隔 汽车间距=汽车速度×汽车发车时间间隔
(2)、求到达目的地后相遇和追及的公共汽车的辆数。
标准方法是:画图——尽可能多的列3个好使公式——结合s全程=v×t-结合植树问题数数。 (3) 当出现多次相遇和追及问题——柳卡
火车过桥
火车过桥问题常用方法
⑴ 火车过桥时间是指从车头上桥起到车尾离桥所用的时间,因此火车的路程是桥长与车身长度之和. ⑵ 火车与人错身时,忽略人本身的长度,两者路程和为火车本身长度;火车与火车错身时,两者路程和则为两车身长度之和.
⑶ 火车与火车上的人错身时,只要认为人具备所在火车的速度,而忽略本身的长度,那么他所看到的错车的相应路程仍只是对面火车的长度.
对于火车过桥、火车和人相遇、火车追及人、以及火车和火车之间的相遇、追及等等这几种类型的题目,在分析题目的时候一定得结合着图来进行.
接送问题
根据校车速度(来回不同)、班级速度(不同班不同速)、班数是否变化分类为四种常见题型: (1)车速不变-班速不变-班数2个(最常见) (2)车速不变-班速不变-班数多个 (3)车速不变-班速变-班数2个 (4)车速变-班速不变-班数2个 标准解法:画图+列3个式子
1、总时间=一个队伍坐车的时间+这个队伍步行的时间; 2、班车走的总路程;
3、一个队伍步行的时间=班车同时出发后回来接它的时间。
时钟问题:
时钟问题可以看做是一个特殊的圆形轨道上2人追及问题,不过这里的两个“人”分别是时钟的分针和时针。
时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。
启迪无限智慧 打造高商学业 尚学热线 7875316
1
智尚学业
流水行船问题中的相遇与追及
①两只船在河流中相遇问题,当甲、乙两船(甲在上游、乙在下游)在江河里相向开出: 甲船顺水速度+乙船逆水速度=(甲船速+水速)+(乙船速-水速)=甲船船速+乙船船速 ②同样道理,如果两只船,同向运动,一只船追上另一只船所用的时间,与水速无关. 甲船顺水速度-乙船顺水速度=(甲船速+水速)-(乙船速+水速)=甲船速-乙船速 也有:甲船逆水速度-乙船逆水速度=(甲船速-水速)-(乙船速-水速)=甲船速-乙船速.
说明:两船在水中的相遇与追及问题同静水中的及两车在陆地上的相遇与追及问题一样,与水速没有关系.
例题精讲:
模块一 发车问题
【例 1】 某停车场有10辆出租汽车,第一辆出租汽车出发后,每隔4分钟,有一辆出租汽车开出.在第一
辆出租汽车开出2分钟后,有一辆出租汽车进场.以后每隔6分钟有一辆出租汽车回场.回场的出租汽车,在原有的10辆出租汽车之后又依次每隔4分钟开出一辆,问:从第一辆出租汽车开出后,经过多少时间,停车场就没有出租汽车了?
【解析】 这个题可以简单的找规律求解
时间 车辆 4分钟 9辆 6分钟 10辆 8分钟 9辆 12分钟 9辆 16分钟 8辆 18分钟 9辆 20分钟 8辆 24分钟 8辆
由此可以看出:每12分钟就减少一辆车,但该题需要注意的是:到了剩下一辆的时候是不符合这种规律的到了12*9=108分钟的时候,剩下一辆车,这时再经过4分钟车厂恰好没有车了,所以第112分钟时就没有车辆了,但题目中问从第一辆出租汽车开出后,所以应该为108分钟。
【例 2】 某人沿着电车道旁的便道以每小时4.5千米的速度步行,每7.2分钟有一辆电车迎面开过,每12分
钟有一辆电车从后面追过,如果电车按相等的时间间隔以同一速度不停地往返运行.问:电车的速度是多少?电车之间的时间间隔是多少?
【解析】 设电车的速度为每分钟x米.人的速度为每小时4.5千米,相当于每分钟75米.根据题意可列方程
如下:?x?75??7.2??x?75??12,解得x?300,即电车的速度为每分钟300米,相当于每小时18
千米.相同方向的两辆电车之间的距离为:?300?75??12?2700(米),所以电车之间的时间间隔为:
2700?300?9(分钟).
模块二 火车过桥
【例 3】 小李在铁路旁边沿铁路方向的公路上散步,他散步的速度是1.5 米/秒,这时迎面开来一列火
车,从车头到车尾经过他身旁共用了 20秒.已知火车全长 390米,求火车的速度.
【答案】18米/秒
【例 4】 小英和小敏为了测量飞驶而过的火车速度和车身长,他们拿了两块跑表.小英用一块表记下了火车
从她面前通过所花的时间是15秒;小敏用另一块表记下了从车头过第一根电线杆到车尾过第二根电
启迪无限智慧 打造高商学业 尚学热线 7875316
2
智尚学业
线杆所花的时间是20秒.已知两电线杆之间的距离是100米.你能帮助小英和小敏算出火车的全长和时速吗?
【解析】 火车的时速是:100÷(20-15)×60×60=72000(米/小时),车身长是:20×15=300(米)
【例 5】 列车通过 250 米的隧道用 25秒,通过 210 米长的隧道用 23秒.又知列车的前方有一辆与
它同向行驶的货车,货车车身长 320米,速度为每秒17米.列车与货车从相遇到相离需要多少秒?
【解析】 列车的速度是 (250 -210) ÷(25 -23) =20 (米/秒),列车的车身长: 20 ×25- 250 =250
(米).列车与货车从相遇到相离的路程差为两车车长,根据路程差 ? 速度差?追击时间,可得列车与货车从相遇到相离所用时间为: (250 +320)÷ (20 -17)= 190 (秒).
【例 6】 某列车通过250米长的隧道用25秒,通过210米长的隧道用23秒,若该列车与另一列长150
米.时速为72千米的列车相遇,错车而过需要几秒钟?
【解析】 根据另一个列车每小时走72千米,所以,它的速度为:72000÷3600=20(米/秒),
某列车的速度为:(25O-210)÷(25-23)=40÷2=20(米/秒)
某列车的车长为:20×25-250=500-250=250(米), 两列车的错车时间为:(250+150)÷(20+20)=400÷40=10(秒)。
【例 7】 李云靠窗坐在一列时速 60千米的火车里,看到一辆有 30节车厢的货车迎面驶来,当货车车
头经过窗口时,他开始计时,直到最后一节车厢驶过窗口时,所计的时间是18秒.已知货车车厢长15.8米,车厢间距1.2 米,货车车头长10米.问货车行驶的速度是多少?
【解析】 本题中从货车车头经过窗口开始计算到货车最后一节车厢驶过窗口,相当于一个相遇问题,总路程
为货车的车长.货车总长为: (15.8× 30+ 1.2× 30 +10) ÷1000 =0.52 (千米), 火车行进的距离为:60×18/3600=0.3 (千米), 货车行进的距离为: 0.52- 0.3 =0.22(千米), 货车的速度为:0.22÷18/3600=44 (千米/时).
【例 8】 铁路旁的一条与铁路平行的小路上,有一行人与骑车人同时向南行进,行人速度为3.6千米/时,
骑车人速度为10.8千米/时,这时有一列火车从他们背后开过来,火车通过行人用22秒,通过骑车人用26秒,这列火车的车身总长是多少?
【解析】 行人的速度为3.6千米/时=1米/秒,骑车人的速度为10.8千米/时=3米/秒。火车的车身长度既等
于火车车尾与行人的路程差,也等于火车车尾与骑车人的路程差。如果设火车的速度为x米/秒,那么火车的车身长度可表示为(x-1)×22或(x-3)×26,由此不难列出方程。
法一:设这列火车的速度是x米/秒,依题意列方程,得(x-1)×22=(x-3)×26。 解得x=14。所以火车的车身长为:(14-1)×22=286(米)。
法二:直接设火车的车长是x, 那么等量关系就在于火车的速度上。可得:x/26+3=x/22+1 这样直接也可以x=286米
启迪无限智慧 打造高商学业 尚学热线 7875316
3
智尚学业
法三:既然是路程相同我们同样可以利用速度和时间成反比来解决。
两次的追及时间比是:22:26=11:13,所以可得:(V车-1):(V车-3)=13:11, 可得V车=14米/秒,所以火车的车长是(14-1)×22=286(米)
模块三 流水行船
【例 9】 乙船顺水航行2小时,行了120千米,返回原地用了4小时.甲船顺水航行同一段水路,用了3小
时.甲船返回原地比去时多用了几小时?
【解析】 乙船顺水速度:120÷2=60(千米/小时).乙船逆水速度:120÷4=30(千米/小时)。水流速度:(60-30)
÷2=15(千米/小时).甲船顺水速度:12O÷3=4O(千米/小时)。甲船逆水速度:40-2×15=10(千米/小时).甲船逆水航行时间:120÷10=12(小时)。甲船返回原地比去时多用时间:12-3=9(小时).
【例 10】 船往返于相距180千米的两港之间,顺水而下需用10小时,逆水而上需用15小时。由于暴雨后水
速增加,该船顺水而行只需9小时,那么逆水而行需要几小时?
【解析】 本题中船在顺水、逆水、静水中的速度以及水流的速度都可以求出.但是由于暴雨的影响,水速发生
变化,要求船逆水而行要几小时,必须要先求出水速增加后的逆水速度. 船在静水中的速度是:(180÷10+180÷15)÷2=15(千米/小时). 暴雨前水流的速度是:(180÷10-180÷15)÷2=3(千米/小时). 暴雨后水流的速度是:180÷9-15=5(千米/小时).
暴雨后船逆水而上需用的时间为:180÷(15-5)=18(小时).
【例 11】 一艘轮船顺流航行 120 千米,逆流航行 80 千米共用 16 时;顺流航行 60 千米,逆流航行 120 千
米也用 16 时。求水流的速度。 【解析】 两次航行都用 16 时,而第一次比第二次顺流多行 60 千米,逆流少行 40 千米,这表明顺流
行60 千米与逆流行 40 千米所用的时间相等,即顺流速度是逆流速度的 1.5 倍。将第一次航行看成是 16 时顺流航行了 120+80×1.5=240(千米),由此得到顺流速度为 240÷16=15(千米/时),逆流速度为15÷1.5=10(千米/时),最后求出水流速度为(15-10)÷2=2.5(千米/时)。
课后练习:
练习1. 一条街上,一个骑车人与一个步行人同向而行,骑车人的速度是步行人速度的3倍,每隔10分钟有
一辆公共汽车超过行人,每隔20分钟有一辆公共汽车超过骑车人.如果公共汽车从始发站每次间隔同样的时间发一辆车,那么间隔多少分钟发一辆公共汽车?
【解析】 紧邻两辆车间的距离不变,当一辆公共汽车超过步行人时,紧接着下一辆公汽与步行人间的距离,
就是汽车间隔距离.当一辆汽车超过行人时,下一辆汽车要用10分才能追上步行人.即追及距离=(汽车速度-步行速度)×10.对汽车超过骑车人的情形作同样分析,再由倍速关系可得汽车间隔时间等于汽车间隔距离除以5倍的步行速度.即: 10×4×步行速度÷(5×步行速度)=8(分)
练习2. 甲、乙两地是电车始发站,每隔一定时间两地同时各发出一辆电车,小张和小王分别骑车从甲、乙
两地出发,相向而行.每辆电车都隔6分钟遇到迎面开来的一辆电车;小张每隔8分钟遇到迎面开来的一辆电车;小王每隔9分钟遇到迎面开来的一辆电车.已知电车行驶全程是45分钟,那么小张与小王在途中相遇时他们已行走了 分钟.
【解析】 由题意可知,两辆电车之间的距离
10电车行12分钟的路程
启迪无限智慧 打造高商学业 尚学热线 7875316
4
共分享92篇相关文档