云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 高中数学新人教版选修2-2课时作业:第一章 导数及其应用1.2.1几个常用函数的导数基本初等函数的导数公式

高中数学新人教版选修2-2课时作业:第一章 导数及其应用1.2.1几个常用函数的导数基本初等函数的导数公式

  • 62 次阅读
  • 3 次下载
  • 2025/6/16 19:54:32

(3)∵y=-2sin (1-2cos) 24

=2sin (2cos-1)=2sin cos =sin x,

2422∴y′=(sin x)′=cos x. (4)∵y=log2x-log2x=log2x, ∴y′=(log2x)′=二、能力提升

8.已知直线y=kx是曲线y=e的切线,则实数k的值为( ) 11

A. B.- C.-e D.e ee答案 D

解析 y′=e,设切点为(x0,y0),则

xx2

x2

xx2

xxx1

. x·ln 2

y0=kx0, ①??

?y0=ex0, ②??k=ex0, ③

∴ex0=ex0·x0,∴x0=1,∴k=e. x

9.(2013·江西)设函数f(x)在(0,+∞)内可导,且f(e)=x+e,则f′(1)=________. 答案 2

解析 设e=t,则x=ln t(t>0), ∴f(t)=ln t+t 1

∴f′(t)=+1,

xxt∴f′(1)=2.

10.求下列函数的导数: (1)y=xx;(2)y=x;(3)y=

37

-15;

x(4)y=ln 3;(5)y=xx(x>0).

?1333

解 (1)y′=(xx)′=(x)′=x2=x.

22

32(2)y′=7x.

5-5-6

(3)y′=(-x)′=5x=6.

6

x(4)y′=(ln 3)′=0.

(5)因为y=xx,所以y=x,

3

52

55535xx?12所以y′=(x)′=x=x2=. 222

5211.已知f(x)=cos x,g(x)=x,求适合f′(x)+g′(x)≤0的x的值. 解 ∵f(x)=cos x,g(x)=x,

∴f′(x)=(cos x)′=-sin x,g′(x)=x′=1, 由f′(x)+g′(x)≤0,得-sin x+1≤0, 即sin x≥1,但sin x∈-1,1], π

∴sin x=1,∴x=2kπ+,k∈Z.

2

12.已知抛物线y=x,直线x-y-2=0,求抛物线上的点到直线的最短距离.

解 根据题意可知,与直线x-y-2=0平行的抛物线y=x的切线,对应的切点到直线x-y-2=0的距离最短,设切点坐标为(x0,x0),则y′|x=x0=2x0=1, 1?11?所以x0=,所以切点坐标为?,?, 2?24?切点到直线x-y-2=0的距离

2

2

2

d=?1-1-2??24???722=8, 72所以抛物线上的点到直线x-y-2=0的最短距离为. 8三、探究与拓展 13.设f0(x)=sin x,f1(x)=f0′(x),f2(x)=f1′(x),…,fn+1(x)=fn′(x),n∈N,试求

f2 014(x).

解 f1(x)=(sin x)′=cos x,

f2(x)=(cos x)′=-sin x, f3(x)=(-sin x)′=-cos x, f4(x)=(-cos x)′=sin x, f5(x)=(sin x)′=f1(x), f6(x)=f2(x),…,

fn+4(x)=fn(x),可知周期为4,

∴f2 014(x)=f2(x)=-sin x.

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

(3)∵y=-2sin (1-2cos) 24=2sin (2cos-1)=2sin cos =sin x, 2422∴y′=(sin x)′=cos x. (4)∵y=log2x-log2x=log2x, ∴y′=(log2x)′=二、能力提升 8.已知直线y=kx是曲线y=e的切线,则实数k的值为( ) 11A. B.- C.-e D.e ee答案 D 解析 y′=e,设切点为(x0,y0),则 xx2x2xx2xxx1. x·ln 2y0=kx0, ①???y0=ex0, ②??k=ex0,

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com