当前位置:首页 > 人教版七年级数学下《压轴题培优》期末复习专题含答案
---- =180°﹣( 45°+90°) =45°,
∴ D 点在运动过程中,∠ N 的大小不变,求出其值为
45°
5. 略
6. 解:
( 1) 120°;∠ CBN
( 2)∵ AM∥ BN,
∴∠ ABN+∠ A=180°, ∴∠ ABN=180° -60 ° =120°,
∴∠ ABP+∠ PBN=120°,
∵ BC平分∠ ABP, BD平分∠ PBN, ∴∠ ABP=2∠ CBP,∠ PBN=2∠
DBP, ∴ 2∠ CBP+2∠ DBP=120°,
∴∠ CBD=∠ CBP+∠ DBP=60°; ( 3)不变,∠ APB:∠ ADB=2: 1. ∵ AM∥BN,
∴∠ APB=∠ PBN,∠ ADB=∠ DBN, ∵ BD平分∠ PBN, ∴∠ PBN=2∠ DBN,
∴∠ APB:∠ ADB=2: 1; ( 4)∵ AM∥ BN, ∴∠ ACB=∠ CBN,
当∠ ACB=∠ ABD时,则有∠ CBN=∠ ABD, ∴∠ ABC+∠ CBD=∠ CBD+∠DBN, ∴∠ ABC=∠ DBN,
由( 1)可知∠ ABN=120°,∠ CBD=60°, ∴∠ ABC+∠ DBN=60°, ∴∠ ABC=30°.
7.
解:( 1)∵ ED∥ BC,∴∠ B=∠ EAD,∠ C=∠ DAE,故答案为:∠ EAD,∠ DAE;
( 2)过 C 作 CF∥ AB,∵ AB∥ DE,∴ CF∥ DE,∴∠ D=∠ FCD,
∵ CF∥AB,∴∠ B=∠ BCF,∵∠ BCF+∠ BCD+∠ DCF=360°,∴∠ B+∠ BCD+∠
D=360°,( 3) A.如图 2,过点 E 作 EF∥ AB,∵ AB∥ CD,∴ AB∥ CD∥ EF,
∴∠ ABE=∠ BEF,∠ CDE=∠ DEF,
∵ BE平分∠ ABC, DE平分∠ ADC,∠ ABC=60°,∠ ADC=70°,
∴∠ ABE= ∠ ABC=30°,∠ CDE= ∠ ADC=35°,
∴∠ BED=∠ BEF+∠ DEF=30° +35° =65°;故答案为:
65;B、如图 3,过点 E 作 EF∥ AB,
∵ BE平分∠ ABC, DE平分∠ ADC,∠ ABC=n°,∠
ADC=70° ∴∠ ABE= ∠ ABC= n°,∠ CDE= ∠ ADC=35°
∵ AB∥CD,∴ AB∥ CD∥ EF,∴∠ BEF=180°﹣∠ ABE=180°﹣ n°,∠ CDE=∠ DEF=35°,
∴∠ BED=∠ BEF+∠ DEF=180°﹣ n°+35° =215°﹣ n°.故答案为: n.
----- 215°﹣
----
8. 解:( 1) a=-4 , b=8;( 2)D(-6,0),(-2,0),(0,4),(0,12) 9. 解:
;( 3)45° .
----- ---- 10. 解:
11. 解:
-----
---- 解:( 1)根据题意,可得三角形 OAB沿 x 轴负方向平移 3 个单位得到三角形
DEC,
∵点 A 的坐标是( 1, 0),∴点 E 的坐标是( -2 , 0);故答案为:( -2 , 0);
( 2)①∵点 C的坐标为( -3 , 2).∴ BC=3, CD=2, ∵点 P 的横坐标与纵坐标互为相反数;∴点
P 在线段 BC上,∴ PB=CD,即 t=2 ;
∴当 t=2 秒时,点 P 的横坐标与纵坐标互为相反数;故答案为: 2;
②当点 P 在线段 BC上时,点 P 的坐标( -t , 2), 当点 P 在线段 CD上时,点 P 的坐标( -3 , 5-t );
③能确定,如图,过
P 作 PE∥ BC交 AB 于 E,则 PE∥ AD,∴∠ 1=∠ CBP=x°,∠ 2=∠ DAP=y°,∴∠∠ 1+∠2=x° +y° =z°,∴ z=x+y .
解:
----- BPA=
12.
13.
共分享92篇相关文档