当前位置:首页 > 初中数学最短路径问题典型题型及解题技巧
仅供个人参考
从长方体的一个顶点A处沿长方体的表面爬到长方体上和A相对的顶点B处,则需要爬行的最短路径长为( )
A.5
cm B.
cm C.4
cm D.3
cm
分析:把此长方体的一面展开,在平面内,两点之间线段最短.利用勾股定理求点A和B点间的线段长,即可得到蚂蚁爬行的最短距离.在直角三角形中,一条直角边长等于长方体的高,另一条直角边长等于长方体的长宽之和,利用勾股定理可求得. 解:因为平面展开图不唯一,
故分情况分别计算,进行大、小比较,再从各个路线中确定最短的路线. (1)展开前面、右面,由勾股定理得AB2=(5+4)2+32=90; (2)展开前面、上面,由勾股定理得AB2=(3+4)2+52=74; (3)展开左面、上面,由勾股定理得AB2=(3+5)2+42=80; 所以最短路径长为
cm.
例:如图是一个长4m,宽3m,高2m的有盖仓库,在其内壁的A处(长的四等分)有一只壁虎,B处(宽的三等分)有一只蚊子,则壁虎爬到蚊子处最短距离为( )
A.4.8 B.
C.5 D.
分析:先将图形展开,再根据两点之间线段最短可知. 解:有两种展开方法:
①将长方体展开成如图所示,连接A、B, 根据两点之间线段最短,AB=
=
;
=5<
;
②将长方体展开成如图所示,连接A、B,则AB=
所以最短距离 5
不得用于商业用途
仅供个人参考
例:有一棵9米高的大树,树下有一个1米高的小孩,如果大树在距地面4米处折断(未完全折断),则小孩至少离开大树 米之外才是安全的.
分析:根据题意构建直角三角形ABC,利用勾股定理解答.
解:如图,BC即为大树折断处4m减去小孩的高1m,则BC=4﹣1=3m,AB=9﹣4=5m, 在Rt△ABC中,AC=
=
=4.
例:如图,在一个长为2米,宽为1米的矩形草地上,如图堆放着一根长方体的木块,它的棱长和场地宽AD平行且>AD,木块的正视图是边长为0.2米的正方形,一只蚂蚁从点A处,到达C处需要走的最短路程是 米.(精确到0.01米)
分析:解答此题要将木块展开,然后根据两点之间线段最短解答. 解:由题意可知,将木块展开,相当于是AB+2个正方形的宽, ∴长为2+0.2×2=2.4米;宽为1米. 于是最短路径为:
=2.60米.
例:如图,AB为⊙O直径,AB=2,OC为半径,OC⊥AB,D为AC三等分点,点P为OC上的动点,求AP+PD的最小值。
分折:作D关于OC的对称点D’,于是有PA+PD’≥AD’,
(当且仅当P运动到Po处,等号成立,易求AD’=3。
六、在圆锥中,可将其侧面展开求出最短路程
将圆锥侧面展开,根据同一平面内的问题可求出最优设计方案
例:如图,一直圆锥的母线长为QA=8,底面圆的半径r=2,若一只小蚂蚁从A点出发,绕圆锥的侧面爬行一周后又回到A点,则蚂蚁爬行的最短路线长是 (结果保留根式)
小虫爬行的最短路线的长是圆锥的展开图的扇形的弧所根据题意可得出:2πr=n.π.OA,/180则, 则, 由勾股
不得用于商业用途
对的弦长,
n×π×8 2×π×2= 180
解得:n=90°, 定理求得它的弦长AA
仅供个人参考
一、题中出现一个动点。
当题中只出现一个动点时,可作定点关于动点所在直线的对称点,利用两点之间线段最短,或三角形两边之和小于第三边求出最值.
例:如图,在正方形ABCD中,点E为AB上一定点, 且BE=10,CE=14,P为BD上一动点,求PE+PC最小值。
分析:作E关于BD对称点E’,E’在AB上, 有PE+PC=PE’+PC≥E’C易求E’C=26。
二、题中出现两个动点。
当题中出现两个定点和两个动点时,应作两次定点关于动点所在直线的对称点.利用两点之间线段最短求出最值。
例:如图,在直角坐标系中有四个点, A(-8,3),B(-4,5)C(0,n),D(m,0),当四边形ABCD周长最短时,求 分折:因AB长为定值,四边形周长
最短时有BC+CD+DA最短,作B关于y轴对称点B’, A关于x轴对称点A’,
DA+DC+BC=DA’+DC+B’C≥B’A’(当D,C运动到AB和
2777mxx轴y轴的交点时等号成立),易求直线A’B’解折式y= 3+3,C0(0,3),D0(-2,0),此时n=- 23
m 。 n三、题中出现三个动点时。 在求解时应注意两点:
(1)作定点关于动点所在直线的对称点, (2)同时要考虑点点,点线,线线之间的最短问题.
例:如图,在菱形ABCD中,AB=2,∠BAD=60,E,F,P分别为AB,BC,AC上动点,求PE+PF最小值
分折:作E关于AC所直线的对称点E’,于是有,
不得用于商业用途
仅供个人参考
PE+PF=PF+PE’≥E’F,又因为E在AB上运动,故当EF和AD,BC垂直时,E0F最短,易求E0F=3。
例:如图,∠AOB=45,角内有一动点P ,PO=10,在AO,BO上有两动点Q,R,求△PQR周长的最小值。
分折:作P关于OA,OB对称点P1,P2 。 于是有PQ+QR+PR=QP1+QR+RP2≥P1P2,
由对称性易知△P1OP2为等腰RT△,OP=OP1=OP2=10,P1P2=102
总之,在这一类动点最值问题中,关键在于,我们善于作定点关于动点所在直线的对称点,或动点关于动点所在直线的对称点。这对于我们解决此类问题有事半功倍的作用。
1、运用轴对称解决距离最短问题
运用轴对称及两点之间线段最短的性质,将所求线段之和转化为一条线段的长,是解决距离之和最小问题的基本思路,不论题目如何变化,运用时要抓住直线同旁有两点,这两点到直线上某点的距离和最小这个核心,所有作法都相同.
注意:利用轴对称解决最值问题应注意题目要求 根据轴对称的性质、利用三角形的三边关系,通过比较来说明最值问题是常用的一种方法.解决这类最值问题时,要认真审题,不要只注意图形而忽略题意要求,审题不清导致答非所问.
2、利用平移确定最短路径选址
选址问题的关键是把各条线段转化到一条线段上.如果两点在一条直线的同侧时,过两点的直线与原直线的交点处构成线段的差最大,如果两点在一条直线的异侧时,过两点的直线与原直线的交点处构成的线段的和最小,都可以用三角形三边关系来推理说明,通常根据最大值或最小值的情况取其中一个点的对称点来解决.
解决连接河两岸的两个点的最短路径问题时,可以通过平移河岸的方法使河的宽度变为零,转化为求直线异侧的两点到直线上一点所连线段的和最小的问题.
在解决最短路径问题时,我们通常利用轴对称、平移等变换把不在一条直线上的两条线段转化到一条直线上,从而作出最短路径的方法来解决问题.
不得用于商业用途
仅供个人参考
仅供个人用于学习、研究;不得用于商业用途。
For personal use only in study and research; not for commercial use.
Nur für den pers?nlichen für Studien, Forschung, zu kommerziellen Zwecken verwendet werden. Pour l 'étude et la recherche uniquement à des fins personnelles; pas à des fins commerciales.
только для людей, которые используются для обучения, исследований и не должны использоваться в коммерческих целях.
以下无正文
不得用于商业用途
共分享92篇相关文档