云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 2020届高考步步高数学(理)一轮复习(京津鲁琼用解析版)第八章 8.1

2020届高考步步高数学(理)一轮复习(京津鲁琼用解析版)第八章 8.1

  • 62 次阅读
  • 3 次下载
  • 2025/5/25 11:18:15

§8.1 空间几何体的结构、表面积与体积

最新考纲 1.利用实物模型、计算机软件观察大量空间图形,认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.2.了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式).

1.空间几何体的结构特征 (1)多面体的结构特征

名称 棱柱 棱锥 棱台 图形 底面 侧棱 侧面形状

(2)旋转体的结构特征

名称 图形 母线

多边形 相交于一点但不一定相等 三角形 互相平行 互相平行且全等 平行且相等 平行四边形 延长线交于一点 梯形 圆柱 圆锥 圆台 球 相交于一点 1

延长线交于一点 平行、相等且垂直

于底面 轴截面 侧面 展开图

2.圆柱、圆锥、圆台的侧面展开图及侧面积公式

圆柱 圆锥 圆台 全等的矩形 矩形 全等的等腰三角形 扇形 全等的等腰梯形 扇环 圆 侧面展开图 侧面积公式

3.空间几何体的表面积与体积公式

名称 几何体 柱体(棱柱和圆柱) 锥体(棱锥和圆锥) 台体(棱台和圆台) 球

概念方法微思考

1.底面是正多边形的棱柱是正棱柱吗?为什么?

提示 不一定.因为底面是正多边形的直棱柱才是正棱柱. 2.如何求不规则几何体的体积?

提示 求不规则几何体的体积要注意分割与补形,将不规则的几何体通过分割或补形转化为规则的几何体求解.

表面积 S表面积=S侧+2S底 S表面积=S侧+S底 S表面积=S侧+S上+S下 S=4πR2 体积 V=S底·h 1V=S底·h 31V=(S上+S下+S上S下)h 34V=πR3 3S圆柱侧=2πrl S圆锥侧=πrl S圆台侧=π(r1+r2)l

题组一 思考辨析

1.判断下列结论是否正确(请在括号中打“√”或“×”)

(1)有两个面平行,其余各面都是平行四边形的几何体是棱柱.( × ) (2)有一个面是多边形,其余各面都是三角形的几何体是棱锥.( × )

2

(3)棱台是由平行于底面的平面截棱锥所得的平面与底面之间的部分.( √ ) (4)锥体的体积等于底面积与高之积.( × )

(5)已知球O的半径为R,其内接正方体的边长为a,则R=

3

a.( √ ) 2

(6)圆柱的一个底面积为S,侧面展开图是一个正方形,那么这个圆柱的侧面积是2πS.( × ) 题组二 教材改编

2.已知圆锥的表面积等于12π cm2,其侧面展开图是一个半圆,则底面圆的半径为( ) 3A.1 cm B.2 cm C.3 cm D. cm

2答案 B

解析 S表=πr2+πrl=πr2+πr·2r=3πr2=12π, ∴r2=4,∴r=2.

3.在如图所示的几何体中,是棱柱的为________.(填写所有正确的序号)

答案 ③⑤ 题组三 易错自纠

4.体积为8的正方体的顶点都在同一球面上,则该球的表面积为( ) 32

A.12π B.π C.8π D.4π

3答案 A

解析 由题意可知正方体的棱长为2,其体对角线为23即为球的直径,所以球的表面积为4πR2=(2R)2π=12π,故选A.

5.如图,将一个长方体用过相邻三条棱的中点的平面截出一个棱锥,则该棱锥的体积与剩下的几何体体积的比为________.

答案 1∶47

11111

解析 设长方体的相邻三条棱长分别为a,b,c,它截出棱锥的体积V1=××a×b×c

322221147

=abc,剩下的几何体的体积V2=abc-abc=abc,所以V1∶V2=1∶47. 484848

3

题型一 空间几何体的结构特征1.以下命题:

①以直角三角形的一边所在直线为轴旋转一周所得的旋转体是圆锥; ②以直角梯形的一腰所在直线为轴旋转一周所得的旋转体是圆台; ③圆柱、圆锥、圆台的底面都是圆面; ④一个平面截圆锥,得到一个圆锥和一个圆台. 其中正确命题的个数为( ) A.0 B.1 C.2 D.3 答案 B

解析 由圆锥、圆台、圆柱的定义可知①②错误,③正确.对于命题④,只有用平行于圆锥底面的平面去截圆锥,才能得到一个圆锥和一个圆台,④不正确. 2.给出下列四个命题:

①有两个侧面是矩形的立体图形是直棱柱; ②侧面都是等腰三角形的棱锥是正棱锥; ③侧面都是矩形的直四棱柱是长方体;

④底面为正多边形,且有相邻两个侧面与底面垂直的棱柱是正棱柱. 其中不正确的命题为________.(填序号) 答案 ①②③

解析 对于①,平行六面体的两个相对侧面也可能是矩形,故①错;对于②,对等腰三角形的腰是否为侧棱未作说明(如图),故②错;对于③,若底面不是矩形,则③错;④由线面垂直的判定,可知侧棱垂直于底面,故④正确.

综上,命题①②③不正确.

思维升华 空间几何体概念辨析题的常用方法

(1)定义法:紧扣定义,由已知构建几何模型,在条件不变的情况下,变换模型中的线面关系或增加线、面等基本元素,根据定义进行判定. (2)反例法:通过反例对结构特征进行辨析. 题型二 空间几何体的表面积与体积

4

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

§8.1 空间几何体的结构、表面积与体积 最新考纲 1.利用实物模型、计算机软件观察大量空间图形,认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.2.了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式). 1.空间几何体的结构特征 (1)多面体的结构特征 名称 棱柱 棱锥 棱台 图形 底面 侧棱 侧面形状 (2)旋转体的结构特征 名称 图形 母线 多边形 相交于一点但不一定相等 三角形 互相平行 互相平行且全等 平行且相等 平行四边形 延长线交于一点 梯形 圆柱 圆锥 圆台 球 相交于一点 1 延长线交于一点 平行、相等且垂直 于底面 轴截面 侧面 展开

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com