当前位置:首页 > 2013届高考数学第一轮复习精品学案第25讲:平面向量的概念及运算
????????????????????????????????????则AC?OC?OA=2(a-b),AB?OB?OA=b-a,AC??2AB,
????????∵ AC,AB共线且有公共点A,因此,A,B,C三点共线,
????即向量a,b,3a-2b的终点在同一直线上.
点评:(1)利用向量平行证明三点共线,需分两步完成:① 证明向量平行;② 说明两个向量有公共点;
⑵用向量平行证明两线段平行也需分两步完成:①证明向量平行;②说明两向量无公共点。
五.思维总结
数学教材是学习数学基础知识、形成基本技能的“蓝本”,能力是在知识传授和学习过程中得到培养和发展的。新课程试卷中平面向量的有些问题与课本的例习题相同或相似,虽然只是个别小题,但它对学习具有指导意义,教学中重视教材的使用应有不可估量的作用。因此,学习阶段要在掌握教材的基础上把各个局部知识按照一定的观点和方法组织成整体,形成知识体系。
学习本章主要树立数形转化和结合的观点,以数代形,以形观数,用代数的运算处理几何问题,特别是处理向量的相关位置关系,正确运用共线向量和平面向量的基本定理,计算向量的模、两点的距离等。由于向量是一新的工具,它往往会与三角函数、数列、不等式、解几等结合起来进行综合考查,是知识的交汇点。
(1)向量的加法与减法是互逆运算;
(2)相等向量与平行向量有区别,向量平行是向量相等的必要条件; (3)向量平行与直线平行有区别,直线平行不包括共线(即重合),而向量平行则包括共线(重合)的情况;
(4)向量的坐标与表示该向量的有向线条的始点、终点的具体位置无关,只与其相对位置有关系;
- 9 -
共分享92篇相关文档