µ±Ç°Î»ÖãºÊ×Ò³ > ÊýÖµ·ÖÎöµÚÈý°æ¿Î±¾Ï°Ìâ¼°´ð°¸
x?yA??Lx2?2(Lx,Ly)?Ly2???Lx2?2Lx???1212221222Ly2?Ly2??212?(Ax,x)?(Ay,y)?xA?yA£¬¹ÊxAÊÇRnÉϵÄÏòÁ¿·¶Êý¡£
lim(?xi)p??i?1np1/p22£® 23£®
?maxxilim(?(xi/maxxi)p)1/p?maxxi?x1?i?np??i?11?i?n1?i?nn?¡£
T³ä·ÖÐÔ£ºÈôÓÐxºÍyÏßÐÔÏà¹ØÇÒxy?0£¬ ¼´x?ky(k?0)£¬´úÈëµÃ
x?y2?(1?k)y?x?y222£»Î¨Ò»ÐÔ£ºÈôÓÐx?y2?x2?y2£¬ÓÉÓÚ
x?y2?xTx?2xTy?yTy?xTx?yTy?x2?y2£¬Á½±ßͬʱƽ·½¿ÉµÃ³öxTy?0£¬
TTTxy?xxyy£¬µ±ÇÒ½öµ±xºÍyÏßÐÔÏà¹ØÊ±µÈºÅ³ÉÁ¢¡£ ÏûÈ¥¹²Í¬Ïî¿ÉµÃ
24£® 2ÒÔÉÏͼÏñ·Ö±ðΪx1?1£¬xA'?max25£®
y'?0?1£¬xPAyPy??1¡£ PAP?1xx?PAP?1¡£
Ay'y'?maxPy?0?maxx?026£® ÓÉÏòÁ¿·¶ÊýµÄÏàÈÝÐÔ¿ÉÖª´æÔÚ³£Êýa1,a2?0£¬Ê¹µÃa1xs?xt?a2xs£¬ÓÚÊÇÁî
c1?a1/a2>0£¬c2?a2/a1>0£¬Ôò¶ÔÈÎÒâA?Rn?n£¬¾ùÓв»µÈʽc1As?maxxs?0a1Axa2xss?maxxt?0Axxtt?At?maxxs?0a2Axa1xss?c2As¡£
TTTT???(AA)?x?0,AAx??x,AA(Ax)??Ax???(AA)¼´27£® Èô£¬Ôò¾ÍÓУ¬¿ÉÍÆ³ö
TTTT?(ATA)??(AAT)£¬?(AA)??(AA)?(AA)??(AA)¡£Í¬Àí¿ÉÒÔÍÆ³ö£¬×ÛºÏÕâÁ½µã¼´¿ÉµÃ
28£® 29£®
1A?1?1/max?x??0A?1xx???min?1?x??Ax?0A?1x?miny?Ayy???0¡£
?1A(A??A)£¬¹Ê´æÔÚ£¬
A?1?A?A?1?A?1£¬Ôò
?1?1(I?A?A)?1/?1?A?1A?1?(A??A)?1A?1?1A?(1I?A??1A)?A??A1A?1?A??A11?A??1Acond(A)??AA1?cond(A)?AA¡£
30£®
cond(A)??A?A?1?d)A?3?6?£¬µ±??2/3ʱ£¬?£¬µ±??2/3ʱ£¬con(cond(A)??4?2/?£¬µ±???2/3ʱ£¬cond(A)?ÓÐ×îСֵ7¡£
31£® (a) (b)
2cond(A)2??max/?min?(?max(WTW)/?min(WTW))2?cond(W)2£¬£¬
?(WTW)??(WWT),
cond(WT)2??max(WTW)/?min(WTW)?cond(W)2cond(A)2?cond(WT)2cond(W)2¡£
32£® 33£® 34£®
cond(A)2??max/?min?39206.0£¬cond(A)??A?A?1??39601¡£
cond(A)2??max(ATA)?max(AAT)??maxI?maxI?1¡£ cond(AB)?ABB?1A?1?ABB?1A?1?cond(A)cond(B)¡£
µÚ°ËÕ ½âÏßÐÔ·½³Ì×éµÄµü´ú·¨Ï°Ìâ²Î¿¼´ð°¸
1. (a) Jacobiµü´ú¾ØÕó
0.40.2??0???1B?D(L?U)???0.2500.5??0.2?0.30???
3|?I?B|???0.21??0.055?0 ÌØÕ÷·½³ÌΪ
ÌØÕ÷¸ù¾ùСÓÚ1£¬Jacobiµü´ú·¨ÊÕÁ²¡£ Gauss-Seidelµü´ú¾ØÕó
?00.40.2????1G?(D?L)U??00.40.7??00.040.17???
32??0 ÌØÕ÷·½³ÌΪ |?I?G|???0.57??0.096ÌØÕ÷¸ù¾ùСÓÚ1£¬Gauss-Seidelµü´ú·¨ÊÕÁ²¡£ (b) Jacobiµü´ú¸ñʽΪ
X(k?1)?BX(k)?f1
?1Tf?Db?(?1.250.3)ÆäÖÐBÈçÉÏ£¬1£¬
µü´ú18´ÎµÃ
X???3.99999642.99997391.9999999?£¬
TGauss-Seidelµü´ú¸ñʽΪ
X(k?1)?GX(k)?f2
?1Tf?(D?L)b?(?2.42.61.53)ÆäÖÐGÈçÉÏ£¬2£¬
¹²·ÖÏí92ƪÏà¹ØÎĵµ