当前位置:首页 > (浙江专版)2018年高考数学二轮专题复习知能专练(九)数列的通项
知能专练(九) 数列的通项
一、选择题
1.等差数列{an}的前n项和为Sn,若a1=2,S3=12,则a6等于( ) A.8
B.10 C.12 D.14
解析:选C 设等差数列{an}的公差为d,则S3=3a1+3d,所以12=3×2+3d,解得d=2,所以a6=a1+5d=2+5×2=12,故选C.
2.已知等差数列{an}满足a2=3,a5=9,若数列{bn }满足b1=3,bn+1=abn,则{bn}的通项公式为bn=( )
A.2-1 C.2
n+1n B.2+1 D.2
n-1
n-1 +2
解析:选B 据已知易得an=2n-1,故由bn+1=abn可得bn+1=2bn-1,变形为bn+1-1=2(bn-1),即数列{bn-1}是首项为2,公比为2的等比数列,故bn-1=2,解得bn=2+1.故选B.
3.已知数列{an}中,a1=3,a2=5且对于大于2的正整数,总有an=an-1-an-2,则
nna2 018等于( )
A.-5
B.5 C.-3 D.3
解析:选B an+6=an+5-an+4=an+4-an+3-an+4=-(an+2-an+1 )=-an+2+an+1=-(an+1-an)+an+1=an,故数列{an}是以6为周期的周期数列,∴a2 018=a336×6+2=a2=5,故选B.
1?1?n*
4.已知数列{an}满足a1=1,且an=an-1+??(n≥2,且n∈N),则数列{an}的通项公式为
3?3?( )
A.an=
3n n+2
B.an=
n+2
3
n nC.an=n+2 D.an=(n+2)3
1?1?n*nn-1n-1n-2
解析:选B 由an=an-1+??(n≥2且n∈N),得3an=3an-1+1,3an-1=3an-2+1,…,
3?3?3a2=3a1+1,以上各式相加得3an=n+2,故an=
2
nn+2
3
n. 2
5.(2017·宝鸡模拟)已知数列{an}的前n项和为Sn,且满足4(n+1)(Sn+1)=(n+2)an,则数列{an}的通项公式为an=( )
A.(n+1) C.8n
2
3
B.(2n+1) D.(2n+1)-1
22
2
解析:选A 当n=1时,4(1+1)(a1+1)=(1+2)a1,解得a1=8,当n≥2时,由4(Sn+1)?n+2?an?n+1?an-1?n+2?an?n+1?an-1
=,得4(Sn-1+1)=,两式相减得,4an=-,n+1nn+1n2
2
2
2
- 1 -
33
an?n+1?3anan-1a2?n+1?n33即=,所以an=··…··a1=·3·…·3·8=(n+an-1n3an-1an-2a1n3?n-1?2
1),经验证n=1时也符合,所以an=(n+1).
1*
6.在各项均不为零的数列{an}中,若a1=1,a2=,2anan+2=an+1an+2+anan+1(n∈N),则a2 018
3=( )
A.C.1
4 0331
4 035
1 B.
4 0341 D.
4 037
*
33
解析:选C 因为2anan+2=an+1an+2+anan+1(n∈N),所以
2
an+1anan+2
?1?11
=+,所以??是等差数列,
?an?
11111
其公差d=-=2,所以=1+(n-1)×2=2n-1,an=,所以a2 018=.
a2a1an2n-14 035
二、填空题
7.已知数列{an}中,a3=3,an+1=an+2,则a2+a4=________,an=________.
解析:因为an+1-an=2,所以{an}为等差数列且公差d=2,由a1+2d=3得a1=-1,所以
an=-1+(n-1)×2=2n-3,a2+a4=2a3=6.
答案:6 2n-3
8.设数列{an}的前n项和为Sn,且a1=a2=1,{nSn+(n+2)an}为等差数列,则{an}的通项公式an=________.
解析:因为{nSn+(n+2)an}为等差数列,且S1+3a1=4,2S2+4a2=8,则该等差数列的公差为4,所以nSn+(n+2)an=4+4(n-1)=4n,即Sn+减整理得
n+2n+1
an=4,Sn-1+an-1=4(n≥2),两式相nn-1
anna2a3an123nn=(n≥2),则an=a1···…·=n-1×1×××…×=n-1,an-12?n-1?a1a2an-1212n-12
n经验证n=1时也符合,所以an=n-1. 2
答案:
n2
n-1
9.如图,互不相同的点A1,A2,…,An,…和B1,B2,…,Bn,…分别在角O的两条边上,所有AnBn相互平行,且所有梯形AnBnBn+1An+1的面积均相等.设OAn=an.若a1=1,a2=2,则数列{an}的通项公式是________.
- 2 -
解析:设△A1B1O的面积为S0,梯形AnBnBn+1An+1的面积为S?
?a1?2
S0+S?a2?
S0
=???S=3S0,
S0+nS?an+1?2?1+3n=?an+1?2.
=????S0+?n+1?S?an+2?4+3n?an+2?
3n-2?an?2
由上面2种情况得=??
3n+1?an+1????????·…·?
?a1?2?a2?2?a3?2aaa?an?2=?a1?2=1·4·7·…·3n-2=1??a1?2=1?a?????n+1
aaa?2??3??4??n+1??n+1?4710
3n+13n+1?n+1?3n+13n+1,且an-2,n∈N*
1=1?an=3.
答案:a*
n=3n-2,n∈N 三、解答题
10.已知数列{an-1
n}满足a1=1,an=3+an-1(n≥2).
(1)求a2,a3; n(2)证明:a=3-1
n2.
解:(1)易知a2=4,a3=13. (2)证明:由于an-1
n=3+an-1(n≥2),
∴a1
n-an-1=3
n-(n≥2).
∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1 nn=3
n-1
+3
n-2
+…3+1=3-12(n≥2),经检验,n=1时也满足上式,故a3-1
n=2
. 11.数列{a1
n}满足a1=1且8an+1an-16an+1+2an+5=0(n≥1),记bn=
(n≥1).
a1n-
2(1)求b1,b2,b3,b4的值;
(2)求数列{bn}的通项及数列{anbn}的前n项和Sn. 解:(1)由b1
n=
,得a11
n=+. a1bn2n-
2代入递推关系8an+1an-16an+1+2an+5=0, 整理得
4
b-6
n+1bnb+3
=0.
n+1bn即b4
n+1=2bn-3.
由a1=1得b1=2, 所以b820
2=3,b3=4,b4=3
. - 3 -
=
共分享92篇相关文档