当前位置:首页 > 最新人教版六年级数学上册第四单元比教学设计及教学反思
课堂作业新设计
1.6∶7 3∶1 3∶8 5∶6 7∶5 4∶1 4∶5 10∶1 2. (1)4∶5 (2)3∶2 (3)7∶4 (4)5∶2 思维训练
比的基本性质
比的前项和后项同时乘或除以相同的数(0除外),比值不变,这叫做比的基本性质。 化简比:前项和后项只有公因数1的比,叫做最简单的整数比。把比化简成最简
单的整数比,叫做化简比。
1.教材的教学内容比较集中,光靠教材后面的练习题是远远不够的。但也不能随便从作业本或其他教辅资料上抄几题。所以如果设计好巩固练习题,对于时间宝贵的课堂教学来说尤为重要。
2.设计往届学生作业过程中容易出现错误的一组题。让学生进一步巩固比的基本性质,同时让学生对比值和化简比有更清晰的认识。有了针对性的练习后对于提高课堂作业的正确性非常有利。
3.部分学生不注意单位之间的换算。
比的基本性质是在学生学习了比的意义,比与分数、除法的关系,商不变的规律和分数基本性质的基础上进行教学的。教材联系学过的除法中商不变的规律和分数基本性质,通过“想一想”启发学生找出比中有什么相应的性质,然后概括出比的基本性质,应用这个性质可以把比化成最简单的整数比。学生在以前的学习中,已经掌握了商不变的规律和分数的基本性质,六年级的学生有一定的推理概括能力,他们完全可以根据比与分数、除法的关系,推导出比的基本性质,这节课通过让学生猜想—验证—应用,让学生理解比的基本性质,应用性质化简比。
1.运用转化的思想,类推出比的基本性质。
我们知道,比与分数、除法只是形式上的不同,实质上它们是可以互相转化的。教学时,我们先回顾比与分数、除法的关系,复习商不变的规律和分数的基本性质。引导学生想一想:比会不会也有自己的性质,启发他们用举例的方法验证自己的猜想。最后总结出比的基本性质。
2.教学中强调观察得出运用比的基本性质来化简比。
根据比的基本性质将比化简,可以使这两个数量之间的关系更加简单、明了,便于学生分析一些事物现象。
比的应用
教材第54页的内容及练习十二。
1.使学生理解按比例分配的应用题的数量关系,并会解答此类应用题。 2.初步培养学生的逻辑思维能力。
3.渗透事物是普遍联系的和相互转化的辩证唯物主义观点。
重点:使学生弄清分配的是什么,按照什么分配。
难点:能应用比的相关知识解决一些简单的实际问题。
练习题投影片。
1.课前调查,上课汇报。
课前布置学生调查生活中某些事物各组成部分的比,上课时让学生汇报调查情况以及是如何获得这些信息的。
例如:妈妈洗衣服时,30克洗涤剂要兑5千克水。(投影出示) 提问:从这个信息中,你能知道什么? 学生可能有以下回答。
(1)洗涤剂与水的比是3∶500。
(2)把洗衣液的总量平均分成503份,洗涤剂占3份,水占500份。
2.揭示课题。
在工业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配,这种分配的方法通常叫做按比例分配。
板书课题:比的应用。
1.出示例2。
学生默读题目后,思考按1∶4的比配制一瓶500毫升的稀释液是什么意思。
学生先独立思考,再小组交流。
3.比较。
老师:同学们想到的方法都是正确的,比较一下,你认为哪种方法比较简单?
出示教材上的两种方法,学生在教材上填写。 4.反馈练习。
(1)完成教材第55页练习十二的第1题。
学生自己默读题目,独立解答,老师巡视,集体订正。 (2)完成教材第55页练习十二的第4题。
提问:这道题没有告诉分配树苗的比是多少,解答时分配树苗的比怎么确定?(各班人数的比就是分配树苗的比)
提问:平均分是不是按比例分配?
引导学生说出平均分是各部分按1∶1进行分配,因此,平均分是特殊的按比例分配。 5.总结方法。
提问:通过我们刚才的学习,谁能归纳出用按比例分配的方法解决实际问题的一般步骤是怎样的?(投影出示)
按比分配解决实际问题的一般方法: 求平均分得的总份数→求每部分占总份数的几分之几→用分数乘法求出每部分是多少
1.白兔和灰兔只数的比是7∶5,白兔占两种兔总只数的几分之几?灰兔呢?如果两种兔共有48只,白兔和灰兔各有几只?
2.用48厘米长的铁丝围成一个长方形,长方形长和宽的比是5∶3。这个长方形的长和宽各是多少?
共分享92篇相关文档