当前位置:首页 > 高中物理竞赛教程(超详细) 第十讲 几何光学
引起的,它需要非球面透镜来矫正。
视角、视角放大 物体的两端对人眼光心所张的角度叫做视角,视角的大小跟物体的尺寸及物体到人眼的距离有关。当两物点(或同一物体上的两点)对人眼视角大小(约)时,才能被人眼区分。
在看小物体时,为了增大视角就要缩短物眼间距离,但当其小于人眼近点距离时,视网膜上所成的像反而模糊不清。为此,必须使用光学仪器来增大视角。
图1-5-11是人眼(E)通过放大镜观察物体AB的像,当人眼靠近光心时视角。
若物体很靠近焦点,且成像于明视距离,则: ,
若不用放大镜将物体置于明视距离,如图1-5-12,BE=25cm,则视角:
把用光学仪器观察虚像所得视角与将物体放在虚像位置上直接观察的视角φ的比值叫做光学仪器的视角放大率。用β表示视角放大率,即有 对于放大镜,有 。
显微镜 图1-5-13是显微镜成像原理图。被观察物体AB置于物镜焦点外很靠近焦点处,(),成放大实像于目镜焦点内靠近焦点处(),眼睛靠近目镜的光心可观察到位于明视距离的虚像
显微镜的物镜视角放大率
未在图中画出。目镜放大率:
未在图中画出。显微镜的视角放大率:
式中L是镜筒长度。由于\,因此在计算放大率时用L代表物镜像距。通常显微镜焦距很小,多为mm数量级,明镜焦距稍长,但一般也在2cm以内。
望远镜 望远镜用于观察大而远的物体,如图1-5-14,图1-5-15分别表示开普勒望远镜和伽利略望远镜的光路图。
两种望远镜都是用焦距较长的凸透镜做物镜。远处物体从同点发出的光线可近似为平行光,因此将在物镜的焦平面上成一实像。开普勒望远镜的目镜也是凸透镜,其焦距较短,物方焦平面和物镜的像方焦平面几乎重合。结果,以为物,在无穷远处得到虚像。而伽利略望远镜的目镜则是凹透镜,当它的物方焦平面(在右侧)与物镜的像方焦平面重合时,实像却成了虚物,经凹透镜折射成像于无穷远处。
由图中看出伽利略望远镜观察到的像是正立的,可用于观察地面物体,而开普勒望远镜观察到的像是倒立的,只适合作为天文望远镜。从图中的几何关系还可看出两种望远镜的视角放大率均为:
还有一类望远镜的物镜是凹面镜,称为反射式望远镜。大型的天文望远镜都是反射式望远镜。 例题
例1、如图1-5-16。AB为一线状物体,为此物经透镜所成的像。试用作图法确定此镜的位置和焦距,写出作图步骤。
分析: 像是倒像,所以透镜应是凸透镜。物AB和像不平行,所以物相对于透镜的主轴
是斜放的,沿物体AB和其像所引出的延长线的交点必在过光心且垂直于主轴的平面上,这条特殊光线是解答本题的关键光线。
解: 作和的连线,两条连线的交点O就是凸透镜光心的位置。作AB和的延长线交于C点,C点必定落在透镜上。由C、O两点可画出透镜的位置,过O点且与 CO垂直的连线MN就是透镜的主光轴,如图1-5-17所示。过A点作平行于主光轴的直线交透镜于D点,连接,该连线与主光轴的交点F就是透镜的右焦点位置。过作平行于主光轴的直线交透镜于E点,连线EA与主光轴的交点就是透镜左焦点的位置所在。
点评 熟练掌握凸透镜、凹透镜的成像特点和规律,并能灵活运用特 殊光线来作图是解决这一类作图题的关键。
例2、如图1-5-18,MN是凸透镜主光轴,O为光心,F为焦点,图中所画两条光线为点光源S经凸透镜折射的两条光线。用作图法确定光源S与像点的位置。 分析: 经凸透镜折射后的两条出射光线它们看上去是由像点发出来的,所以两条出射光线的反向延长线的交点就是像点的所在位置。由于物点发出的过光心的光线不改变方向,由此可以确定物点S落在直线上,与凸透镜右焦点F的连线交凸透镜于P点,由于物点发出的平行于主光轴的光线经凸透镜折射后过F焦点,所以过P点作与主光轴MN的平行线与相交处就是物点S所在位置。如图1-5-19所示。
解: 反向延长两条出射光线,它们的交点就是像点,分别作和O的连线,和F的连线且与凸透镜交于P,过P点作与MN的平行线PS与交于S,S就是物点所在位置。
点评 正确理解像的物理意义,物与像之间的关系,才能顺利解答这类作图题。 例3、在斯涅耳的档案中有一张光学图(见1-5-20),由于墨水褪色只留下三个点;一个薄透镜的焦点F,光源S和透镜上的一点L。此外还留下一部分从光源S画到其像的直线a。从正文中知道S点比点更靠近透镜,有可能恢复这张图吗?如果可能,把它画出来,并确定图中透镜的焦距。
解: 1、令O为透镜的光学中心;
2、F和O点应位于垂直于透镜的光轴上,因此是直角; 3、连接光源及其像的直线总是通过透镜的光学中心;
4、连接F,L点并以线段FL的中点C为圆心,画一通过F及L点的圆; 5、由于一个圆的直径所对着的圆周角总是直角,可以判定O点位于圆和直线a的交点上; 6、从圆中找到O点的两个可能的位置(和); 7、恢复出两种可能的示意图,如图1-5-21所示;
8、由于光源S比其像更靠近透镜,可以断定只有透镜符合题意。实际上,对透镜可以看到S到的距离大于二倍焦距,因此到的距离小于二倍焦距。
例4、焦距均为f的二凸透镜、与两个圆形平面反射镜、放置如图1-5-22。二透镜共轴,透镜的主轴与二平面镜垂直,并通过二平面镜的中心,四镜的直径相同,在主轴上有一点光源O。
1、画出由光源向右的一条光线OA(如图1-5-22所示)在此光学系统中的光路。
2、分别说出由光源向右发出的光线和向左发出的光线各在哪些位置(O点除外)形成光源O的能看到的像,哪些是实像?哪些是虚像。
3、现在用不透明板把和的下半部(包括透镜中心)都遮住,说出这些像有什么变化。
解: 1、光线OA的第一次往返光路如图1-5-23所示。当光线由图中左方返回经O点后,将继续向右下方进行,作第二次往返。第二次往返的光路在图中未画出,可按图中光路对称于主轴画出。以后,光线重复以上两种往返光路。
2、向右发出的光线:处成实像,右方无限远处成虚像;处成实像;P处(左方处主轴上)成虚像。
向左发出的光线:处成实像;左方无限远处成虚像;处成实像;Q处(右方处主轴上)成虚像。 3、向右发出的光线只在处成实像。向左发出的光线只在处成实像。两像均比未遮住时暗。 例5、一平凸透镜焦距为f,其平面上镀了银,现在其凸面一侧距它2f处,垂直于主轴放置一高为H的物,其下端在透镜的主轴上(图1-5-24)。
(1)用作图法画出物经镀银透镜所成的像,并标明该像是虚、是实。 (2)用计算法求出此像的位置和大小。
分析: 这道题实质是一个凸透镜与一紧密接合的平面镜的组合成像问题。虽然我们画不出光线经透镜折射后射向平面镜的光路,但光路仍然遵守凸透镜与平面镜成像规律,这是我们在具体分析光路时必须牢牢抓住的一点。成像的计算也是遵守凸透镜与平面镜的成像计算方法的。
解: (1)用作图法求得物AP的像及所用各条光线的光路如图1-5-25所示。
说明:平凸透镜平面上镀银后构成一个由会聚透镜L和与它密接的平面镜M组合LM,如图1-5-25所示。图中O为L的光心,为主轴,F和为L的两个焦点,AP为物。作图时利用了下列三条特征光线:
①由P射向O的入射光线,它通过O后方向不变,沿原方向射向平面镜M,然后被M反射,反射光线与主光轴的夹角等于入射角,均为α。反射线射入透镜时通过光心O,故由透镜射出时方向与上述反射线相同,即图中的。
②由P发出且通过L左方焦点F的入射光线PFR,它经过L折射后的出射线与主轴平行,垂直射向平面镜M,然后被M反射,反射光线平行于L的主轴,并向左射入L,经L折射后的出射线通过焦点F,即为图个中RFP。
③由P发出的平行于主轴的入射光线PQ,它经过L折射后的出射线将射向L的焦点,即沿图中的方向射向平面镜,然后被M反射,反射线指向与对称的F点,即沿QF方向。此反射线经L折射后的出射线可用下法画出:通过O作平行于QF辅助线,通过光心,其方向保持不变,与焦面相交于T点。由于入射平行光线经透镜后相交于焦面上的同一点,故QF经L折射后的出射线也通过T点,图中的QT即为QF经L折射后的出射光线。 上列三条出射光线的交点即为LM组合所成的P点的像,对应的即A的像点。由图可判明,像是倒立实像,只要采取此三条光线中任意两条即可得,即为正确的答案。 (2)按陆续成像计算物AP经LM组合所成像的位置、大小。
物AP经透镜L成的像为第一像,取,由成像公式可得像距,即像在平面镜后距离2f处,像的大小与原物相同,。
第一像作为物经反射镜M成的像为第二像。第一像在反射镜M后2f处,对M来说是虚物,成实像于M前2f处。像的大小也与原物相同,。
第二像作为物,再经透镜L而成的像为第三像。这是因为光线由L右方入射。且物(第二像)位于L左方,故为虚物,取物距,由透镜公式可得像距
上述结果表明,第三像,即本题所求的像的位置在透镜左方距离处,像的大小可由求得,即
像高为物高的 。
例6、如图1-5-26所示,凸透镜焦距f=15cm,OC=25cm,以C为圆心、r=5cm为半径的发光圆环与主轴共面。试求出该圆环通过透镜折射后所成的像。 分析: 先考虑发光圆环上任意一点P经透镜所成之像,当P点绕圆环一周时,对应的像点的集合就构成整个发光圆环通过透镜所成的像。因此可用解析几何的方法讨论本题。 解: 如图1-5-27所示,以O点为直角坐标系原点建立坐标系xOy和。考虑发光圆环上任一点P(x,y),则有
①
发光点P(x,y)的像为,根据透镜成像公式及放大率关系可有 ② ③ 联立②、③式解得 ④
⑤
将④、⑤式代入①式中并整理得 ⑥
⑥式即为所需求的圆环之像。这是一个对称中心位于光心45cm处,以主光轴为长轴的椭圆。
讨论 如果把发光圆环用一球壳取代,则根据对称性,球壳的像是以圆环的像绕主轴旋转一周行成的一椭圆。
点评 曲线形线状物通过透镜所成的像也是一定曲线状,至于是什么样的曲线,要视具体情况而定。例如本题中的发光圆环所成的像变为一椭圆环就是一例。本题的关键是要建立恰当的物方和像方坐标系来球解问题。
例7、求厚透镜对两个不同波长有同一焦距的条件。并且不同类型的透镜,讨论可行性。 解: 我们必须知道厚透镜的性质。厚透镜由下述数据表征;球形表面的半径和,厚度d和折射n(图1-5-28),焦距f=BF由下式给出
焦距是从主点B算起的。B离表面的距离为
上述公式对任意厚度的厚透镜都成立,但只对近轴光线才给满意结果,因为是在一定的近似下得到的。
光被透镜色散。透镜对波长的折射率是,对波长的折射率是。按折射率n的幂次整理焦距公式,得
这是一个二次方程。给定一个f值,应有两个n值,因此,我们的问题可以解决。 先后以和代入方程,并令其相等
共分享92篇相关文档