当前位置:首页 > 动量定理及动量守恒定律专题复习(附参考答案)
动量定理及动量守恒定律专题复习
一、知识梳理
1、深刻理解动量的概念
(1)定义:物体的质量和速度的乘积叫做动量:p=mv
(2)动量是描述物体运动状态的一个状态量,它与时刻相对应。 (3)动量是矢量,它的方向和速度的方向相同。
(4)动量的相对性:由于物体的速度与参考系的选取有关,所以物体的动量也与参考系选取有关,因而动量具有相对性。题中没有特别说明的,一般取地面或相对地面静止的物体为参考系。
(5)动量的变化:?p?pt?p0.由于动量为矢量,则求解动量的变化时,其运算遵循平行四边形定则。
A、若初末动量在同一直线上,则在选定正方向的前提下,可化矢量运算为代数运算。
B、若初末动量不在同一直线上,则运算遵循平行四边形定则。 (6)动量与动能的关系:P?2mEk,注意动量是矢量,动能是标量,动量改变,动能不
一定改变,但动能改变动量是一定要变的。 2、深刻理解冲量的概念
(1)定义:力和力的作用时间的乘积叫做冲量:I=Ft
(2)冲量是描述力的时间积累效应的物理量,是过程量,它与时间相对应。
(3)冲量是矢量,它的方向由力的方向决定(不能说和力的方向相同)。如果力的方向在作用时间内保持不变,那么冲量的方向就和力的方向相同。如果力的方向在不断变化,如绳子拉物体做圆周运动,则绳的拉力在时间t内的冲量,就不能说是力的方向就是冲量的方向。对于方向不断变化的力的冲量,其方向可以通过动量变化的方向间接得出。
(4)高中阶段只要求会用I=Ft计算恒力的冲量。对于变力的冲量,高中阶段只能利用动量定理通过物体的动量变化来求。
(5)要注意的是:冲量和功不同。恒力在一段时间内可能不作功,但一定有冲量。特别是力作用在静止的物体上也有冲量。 3、深刻理解动量定理
(1).动量定理:物体所受合外力的冲量等于物体的动量变化。既I=Δp
(2)动量定理表明冲量是使物体动量发生变化的原因,冲量是物体动量变化的量度。这里所说的冲量必须是物体所受的合外力的冲量(或者说是物体所受各外力冲量的矢量和)。 (3)动量定理给出了冲量(过程量)和动量变化(状态量)间的互求关系。
(4)现代物理学把力定义为物体动量的变化率:F??P(牛顿第二定律的动量形式)。
?t(5)动量定理的表达式是矢量式。在一维的情况下,各个矢量必须以同一个规定的方向为正。
4、深刻理解动量守恒定律 (1).动量守恒定律:一个系统不受外力或者受外力之和为零,这个系统的总动量保持不变。
??m2v2? 即:m1v1?m2v2?m1v1(2)动量守恒定律成立的条件
1系统不受外力或者所受外力之和为零; ○
2系统受外力,但外力远小于内力,可以忽略不计; ○
3系统在某一个方向上所受的合外力为零,则该方向上动量守恒。 ○
4全过程的某一阶段系统受的合外力为零,则该阶段系统动量守恒。 ○
??m2v2?,即p1+p2=p1/+p2/外,(3).动量守恒定律的表达形式:除了m1v1?m2v2?m1v1还有:Δp1+Δp2=0,Δp1= -Δp2 和m1???v2
m2?v1(4)动量守恒定律的重要意义
动量守恒定律是物理学中最基本的普适原理之一。(另一个最基本的普适原理就是能量守恒定律。)从科学实践的角度来看,迄今为止,人们尚未发现动量守恒定律有任何例外。
二、动量定理及动量守恒定律的典型应用
1、有关动量的矢量性 例1、质量为50kg的人以8m/s的速度跳上一辆迎面驶来的质量为200kg、速度为4m/s的平板车。人跳上车后,车的速度为:( )
A.4.8m/s B.3.2m/s C.1.6m/s D.2m/s
例2、在距地面高为h,同时以相等初速V0分别平抛,竖直上抛,竖直下抛一质量相等的物体m,当它们落地的瞬间正确的是:( ) A.速度相等 B.动量相等
C.动能相等 D.从抛出到落地的时间相等
拓展一:在距地面高为h,同时以相等初速V0分别平抛,竖直上抛,竖直下抛一质量相等的物体m,当它们从抛出到落地时,比较它们的动量的增量△P,有:( ) A.平抛过程较大 B.竖直上抛过程较大 C.竖直下抛过程较大 D.三者一样大
拓展二:质量为0. 1kg的小球从离地面20m高处竖直向上抛出,抛出时的初速度为15m/s,取g=10m/s,当小球落地时求:(1)小球的动量;(2)小球从抛出至落地过程中动量的变化量;(3)若其初速度方向改为水平,求小球落地时的动量及动量变化量。
2、求恒力和变力冲量的方法。
恒力F的冲量直接根据I=Ft求,而变力的冲量一般要由动量定理或F-t图线与横轴所夹的面积来求。
例3、一个物体同时受到两个力F1、F2的作用,F1、F2与时间t的关系如图1所示,如果该物体从静止开始运动,经过t=10s后F1、F2以及合力F的冲量各是多少?
图1
例4、一质量为100g的小球从0.80m高处自由下落到一厚软垫上.若从小球接触软垫到小
2
球陷至最低点经历了0.2s,则这段时间内软垫对小球的冲量大小为________.(取 g=10m/s,不计空气阻力).
变式:从同样高度落下的玻璃杯,掉在水泥地上容易打碎,而掉在草地上不容易打碎,其原因是:( )
A.掉在水泥地上的玻璃杯动量大,而掉在草地上的玻璃杯动量小
B.掉在水泥地上的玻璃杯动量改变大,掉在草地上的玻璃杯动量改变小 C.掉在水泥地上的玻璃杯动量改变快,掉在草地上的玻璃杯动量改变慢
D.掉在水泥地上的玻璃杯与地面接触时,相互作用时间短,而掉在草地上的玻璃杯与地面接触时间长。
3、动量定理求解相关问题
例5、一个质量为m=2kg的物体在F1=8N的水平推力作用下,从静止开始沿水平面运动了t1=5s,然后推力减小为F2=5N,方向不变,物体又运动了t2=4s后撤去外力,物体再经 过t3=6s停下来。试求物体在水平面上所受的摩擦力。
拓展:如图2所示,矩形盒B的质量为M,放在水平面上,盒内有一质量为m的物体A,A与B、B与地面间的动摩擦因数分别μ1、μ2,开始时二者均静止。现瞬间使物体A获取一向右且与矩形盒B左、右侧壁垂直的水平速度V0,以后物体A在盒B的左右壁碰撞时,B始终向右运动。当A与B最后一次碰撞后,B停止运动,A则继续向右滑行距离S后也停止运动,求盒B运动的时间t。
A V0 B
图2
4、系统动量是否守恒的判定
例6、如图3所示的装置中,木块B与水平桌面间的接触是光滑的,子弹A沿水平方向射入木块后留在木块内,将弹簧压缩到最短.现将子弹、木块和弹簧合在一起作为研究对象(系统),则此系统在从子弹开始射入木块到弹簧压缩至最短的整个过程中︰( ) A.动量守恒、机械能守恒 B.动量不守恒、机械能不守恒 C.动量守恒、机械能不守恒 D.动量不守恒、机械能守恒
图3
变式:把一支枪水平固定在小车上,小车放在光滑的水平面上,枪发射出一颗子弹时,关于枪、弹、车,下列说法正确的是︰( )
A.枪和弹组成的系统,动量守恒 B.枪和车组成的系统,动量守恒
C.三者组成的系统,因为枪弹和枪筒之间的摩擦力很小,使系统的动量变化很小,可以忽略不计,故系统动量近似守恒
D.三者组成的系统,动量守恒,因为系统只受重力和地面支持力这两个外力作用,这两个外力的合力为零
共分享92篇相关文档