云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > (完整word版)平行线知识点,推荐文档

(完整word版)平行线知识点,推荐文档

  • 62 次阅读
  • 3 次下载
  • 2025/5/31 3:07:57

本章总结

本章主要讲述的知识点有相交线与平行线。

其中相交线当中,两线相交,共产生两对对顶角,还引入了邻补角的概念。相交的一种特殊情况是垂直,两条直线交角成90?。经过直线外一点,作直线的垂线,有且只有一条;点到直线上各点的距离中,垂线段最短。

两条直线的另外一种关系是平行,平行就是指两条直线永不相交。平行线之间的距离处处相等。过直线外一点,作已知直线的平行线,有且只有一条。

当同一平面内的三条直线相交时,有三种情况:一种是只有一个交点;一种是有两个交点,即两条直线平行被第三条直线所截;还有一种是三个交点,即三条直线两两相交。 两条直线被第三条直线所截,产生两个交点,形成了八个角(不可分的):

同位角:没有公共顶点的两个角,它们在直线AB,CD的同侧,在第三条直线EF的同旁(即位置相同),这样的一对角叫做同位角; 内错角:没有公共顶点的两个角,它们在直线AB,CD之间,在第三条直线EF的两旁(即位置交错),这样的一对角叫做内错角;

同旁内角:没有公共顶点的两个角,它们在直线AB,CD之间,在第三条直线EF的同旁,这样的一对角叫做同旁内角;

两条直线平行,被第三条直线所截,其同位角,内错角,同旁内角有如下关系: 两直线平行,被第三条直线所截,同位角相等; 两直线平行,被第三条直线所截,内错角相等 两直线平行,被第三条直线所截,同旁内角互补。 平行线判定定理:

两条直线平行,被第三条直线所截,形成的角有如上所说的性质;那么反过来,如果两条直线被第三条直线所截,形成的同位角相等,内错角相等,同旁内角互补,是否能证明这两条直线平行呢?答案是可以的。

两条直线被第三条直线所截,以下几种情况可以判定这两条直线平行: 平行线判定定理1:同位角相等,两直线平行 如图所示,只要满足?1=?2(或者?3=?4;?5=?7;?6=?8),就可以说AB//CD

平行线判定定理2:内错角相等,两直线平行 如图所示,只要满足?6=?2(或者?5=?4),就可以说AB//CD 平行线判定定理3:同旁内角互补,两直线平行

如图所示,只要满足?5+?2=180?(或者?6+?4=180?),就可以说AB//CD

平行线判定定理4:两条直线同时垂直于第三条直线,两条直线平行

这是两直线与第三条直线相交时的一种特殊情况,由上图中?1=?2=90?就可以得到。 平行线判定定理5:两条直线同时平行于第三条直线,两条直线平行

1

知 识 点

1. 相交线

同一平面中,两条直线的位置有两种情况:

相交:如图所示,直线AB与直线CD相交于点O,其中以O为顶点共有4个角: ?1,?2,?3,?4;

邻补角:其中?1和?2有一条公共边,且他们的另一边互为反向延长线。像?1和?2这样的角我们称他们互为邻补角;

对顶角:?1和?3有一个公共的顶点O,并且?1的两边分别是?3两边的反向延长线,具有这种位置关系的两个角,互为对顶角;

?1和?2互补,?2和?3互补,因为同角的补角相等,所以?1=?3。 所以,对顶角相等

垂直:垂直是相交的一种特殊情况两条直线相互垂直,其中一条叫做另一条的垂线,它们的交点叫做垂足。如图所示,图中AB?CD,垂足为O。垂直的两条直线共形成四个直角,每个直角都是90?。 垂线相关的基本性质:

(1) 经过一点有且只有一条直线垂直于已知直线;

(2) 连接直线外一点与直线上各点的所有线段中,垂线段最短; (3) 从直线外一点到直线的垂线段的长度,叫做点到直线的距离。

有两个交点:(这种情况必然是两条直线平行,被第三条直线所截。)如图所示,直线AB,CD平

行,被第三条直线EF所截。这三条直线形成了两个顶点,围绕两个顶点的8个角之间有三种特殊关系:

*同位角:没有公共顶点的两个角,它们在直线AB,CD的同侧,在第三条直线EF的同旁(即位置相同),这样的一对角叫做同位角;

*内错角:没有公共顶点的两个角,它们在直线AB,CD之间,在第三条直线EF的两旁(即位置交错),这样的一对角叫做内错角;

*同旁内角:没有公共顶点的两个角,它们在直线AB,CD之间,在第三条直线EF的同旁,这样的一对角叫做同旁内角;

指出上图中的同位角,内错角,同旁内角。

两条直线平行,被第三条直线所截,其同位角,内错角,同旁内角有如下关系: 两直线平行,被第三条直线所截,同位角相等; 两直线平行,被第三条直线所截,内错角相等 两直线平行,被第三条直线所截,同旁内角互补。 如上图,指出相等的各角和互补的角。

2

平行线判定定理:

两条直线平行,被第三条直线所截,形成的角有如上所说的性质;那么反过来,如果两条直线被第三条直线所截,形成的同位角相等,内错角相等,同旁内角互补,是否能证明这两条直线平行呢?答案是可以的。

两条直线被第三条直线所截,以下几种情况可以判定这两条直线平行: 平行线判定定理1:同位角相等,两直线平行 如图所示,只要满足?1=?2(或者?3=?4;?5=?7;?6=?8),就可以说AB//CD

平行线判定定理2:内错角相等,两直线平行 如图所示,只要满足?6=?2(或者?5=?4),就可以说AB//CD 平行线判定定理3:同旁内角互补,两直线平行

如图所示,只要满足?5+?2=180?(或者?6+?4=180?),就可以说AB//CD

平行线判定定理4:两条直线同时垂直于第三条直线,两条直线平行

3

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

本章总结 本章主要讲述的知识点有相交线与平行线。 其中相交线当中,两线相交,共产生两对对顶角,还引入了邻补角的概念。相交的一种特殊情况是垂直,两条直线交角成90?。经过直线外一点,作直线的垂线,有且只有一条;点到直线上各点的距离中,垂线段最短。 两条直线的另外一种关系是平行,平行就是指两条直线永不相交。平行线之间的距离处处相等。过直线外一点,作已知直线的平行线,有且只有一条。 当同一平面内的三条直线相交时,有三种情况:一种是只有一个交点;一种是有两个交点,即两条直线平行被第三条直线所截;还有一种是三个交点,即三条直线两两相交。 两条直线被第三条直线所截,产生两个交点,形成了八个角(不可分的): 同位角:没有公共顶点的两个角,它们在直线AB,CD的同侧,在第三条直线EF的同旁(即位置相同),这样的一对

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com