云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 解析几何中的定点、定值问题(含答案)

解析几何中的定点、定值问题(含答案)

  • 62 次阅读
  • 3 次下载
  • 2025/6/5 15:15:23

. .

解析几何中的定点和定值问题

【教学目标】学会合理选择参数(坐标、斜率等)表示动态图形中的几何对象,探究、证明其不

变性质(定点、定值等),体会“设而不求”、“整体代换”在简化运算中的作用.

【教学难、重点】解题思路的优化. 【教学方法】讨论式 【教学过程】 一、基础练习

1、过直线x?4上动点P作圆O:x2?y2?4的切线PA、PB,则两切点所在直线AB恒过一定点.此定点的坐标为_________. 【答案】(1,0)

yBPx

A4【解析】设动点坐标为P(4,t),则以OP直径的圆C方程为:x(x?4)?y(y?t)?0 , 故AB是两圆的公共弦,其方程为4x?ty?4. 注:部分优秀学生可由x0x?y0y?r2 公式直接得出. ?4x?4?0令? 得定点(1,0).

y?0?2、已知PQ是过椭圆C:2x2?y2?1中心的任一弦,A是椭圆C上异于P、Q的任意一点.若

AP、AQ 分别有斜率k1、k2 ,则k1?k2=______________.

【答案】-2

【解析】设P(x,y),A(x0,y0),则Q(?x,?y)

y0?yy0?yy02?y2k1?k2???,

x0?xx0?xx02?x222??2x0?y0?1又由A、P均在椭圆上,故有:?2, 2??2x?y?1 Word格式

. .

y02?y2??2 两式相减得2(x0?x)?(y0?y)?0 ,k1?k2?22x0?x2222x2y2??1,过右焦点F作不垂直于x轴的直线交椭圆于A、B两点, 3、椭圆3627AB的垂直平分线交x轴于N,则NF:AB等于_______.=

【答案】e1241 4【解析】

设直线AB斜率为k,则直线方程为y?k?x?3?,

与椭圆方程联立消去y整理可得3?4k2x2?24k2x?36k2?108?0,

??24k236k2?108则x1?x2?, ,x1x2?3?4k23?4k2所以y1?y2??18k, 23?4k?12k2?9k?,则AB中点为?. 22?3?4k3?4k??9k1?12k2????x?所以AB中垂线方程为y?, 22?3?4kk?3?4k??3k2?3k2N,0令y?0,则x?,即??, 23?4k23?4k??3k29(1?k2)?所以NF?3?. 223?4k3?4kAB?NF122??,所以1?kx?x?4xx??. ????12?12?3?4k2AB436?1?k2?x2y24、已知椭圆2?2?1(a?b?0),A,F是其左顶点和左焦点,P是圆x2?y2?b2

ab上的动点,若

PA=常数,则此椭圆的离心率是 PF Word格式

. .

【答案】e=【解析】 因为

5?1 2PA?常数,所以当点P分别在(±b,0)时比值相等, PF即a?ba+b2,整理得:b?ac, =b?cb+c222又因为b?a?c, 所以a?c?ac?0

2

2

22同除以a可得e+e-1=0,解得离心率e=二、典例讨论 例1、

5?1. 2x2y2如图,在平面直角坐标系xOy中,椭圆C: ??1的左顶点为A,过原点O的直线(与

42坐标轴不重合)与椭圆C交于P,Q两点,直线PA,QA分别与y轴交于M,N两点. 试问以MN为直径的圆是否经过定点(与直线PQ的斜率无关)?请证明你的结论.

yMAOQN分析一:

设PQ的方程为y?kx,设点P?x0,y0?(x0?0),则点Q??x0,?y0?.

?y?kx,42联立方程组?2消去得. yx?22x?2y?41?2k? Word格式

Px

. .

所以x0?21?2k2,则y0?2k1?2k2.

所以直线AP的方程为y??2kx?2.从而 M0,???21?1?2k2?1?1?2kk?? ?同理可得点N?0,???. 2?1?1?2k?2k2所以以MN为直径的圆的方程为x?(y?2k1?1?2k22)(y?2k1?1?2k2)?0

整理得:x?y?(222k21?1?2k?2k1?1?2k)y?2?0

?x2?y2?2?0由?,可得定点F(?2,0) ?y?0分析二:

22设P(x0,y0),则Q(﹣x0,﹣y0),代入椭圆方程可得x0?2y0?4.由直线PA方程为:

y?y0??2y0?2y0?(x?2),可得M?0,N0,?,同理由直线QA方程可得??,可得以MN为x0?2x?2x?200????2直径的圆为x??y???2y0??2y0??y?????0,

x0?2??x0?2??2y02y0?4y2??0 整理得:x?y???y?2x0?4?x0?2x0?2?2222由于x0?4??2y0,代入整理即可得x?y??22?4x0y0??y?2?0 2?x0?4?此圆过定点F(?2,0). 分析三: 易证:kAPkAQb21??2??,

a2故可设直线AP斜率为k,则直线AQ斜率为?1. 2k Word格式

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

. . 解析几何中的定点和定值问题 【教学目标】学会合理选择参数(坐标、斜率等)表示动态图形中的几何对象,探究、证明其不变性质(定点、定值等),体会“设而不求”、“整体代换”在简化运算中的作用. 【教学难、重点】解题思路的优化. 【教学方法】讨论式 【教学过程】 一、基础练习 1、过直线x?4上动点P作圆O:x2?y2?4的切线PA、PB,则两切点所在直线AB恒过一定点.此定点的坐标为_________. 【答案】(1,0) yBPx A4【解析】设动点坐标为P(4,t),则以OP直径的圆C方程为:x(x?4)?y(y?t)?0 , 故AB是两圆的公共弦,其方程为4x?ty?4. 注:部分优秀学生可由x0x?y0y?r2 公式直接得出. ?4x?4?0令? 得定点

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com