当前位置:首页 > 四川省宜宾市2017届高三第二次诊断检测数学理试题Word版含答案
②当直线l的斜率存在时且不为0时,设直线l的方程为:
y?kx?m(k,m?R,且k?0),由题意,原点O到直线l的距离为?m2?m33,故, ?22k?1232(k?1).设交点A,B的坐标分别为:?x1,y1?,?x2,y2?, 4?y?kx?m?222则:?x2,?(3k?1)x?6kmx?3(m?1)?0,
2??y?1?33(m2?1)?6kmx1x2?由题意??0,x1?x2?2. ,23k?13k?1?AB?(1?k2)x1?x2
22?(1?k)??x1?x2??22??22236km12(m?1)? ??4x1x2? ?(1?k)?22???3k2?1?3k?1???236k2?(1?k2)32?3?(k?1)?12?(k2?1)?1??3k2?1?4?4??3k2?1?2?424(1?k2)?27k?27k?27k?3????3k2?1?2
27k4?30k2?312k2??3?4
9k4?6k2?19k?6k2?11212?3??4, ?3?12?3?69k2?6?2k当且仅当9k2?31k??,即时等号成立,?ABmax?2; 23k 综上所述,当直线l的斜率k??3时, 3即ABmax?2时,?AOB面积的最大值
S?13133ABmax??2??.......................................(1222222分)
(21)解:(Ⅰ)函数f(x)的定义域为(?1,??), …………1分
a2x2?2x?a? f?(x)?2x? ………2x?1x?1分
令g(x)?2x?2x?a,则??4?8a. ①当a?21时,??0,g(x)?0,从而f?(x)?0,故函数f(x)在(?1,??)上单调递增; 2?1?1?2a?1?1?2a1,x2?时,??0,g(x)?0的两个根为x1?,
222?1?1?2a)函数f(x)单调递减;当
2②当a?当a?0时,x1??1?x2,此时,当x?(?1,x?(当
?1?1?2a,??)函数f(x)单调递增.
20?a?12时,
?1?x1?x2,此时函数f(x)在区间
(?1,?1?1?2a?1?1?2a?1?1?2a?1?1?2a),(,??)单调递增;当x?(,)2222函数f(x)单调递减. 综上: 当a?11时,函数f(x)在(?1,??)上单调递增;当0?a?时,函数f(x)在区间22(?1,?1?1?2a?1?1?2a?1?1?2a?1?1?2a),(,??)单调递增; 在区间(,)函
2222?1?1?2a)函数f(x)单调递
2数
数f(x)单调递减; 当a?0时,x?(?1,减,
x?(?1?1?2a,??)2函f(x)单调递
增............................................................(6分) (Ⅱ)当函数f(x)有两个极值点时, 0?a??1?1?2a11?(?,0), ,x2?22222且g(x2)?2x2?2x2?a?0 即a??2x2?2x2,
1f(x2)?x22?aln(x2?1)?x22?(?2x22?2x2)ln(x2?1) x2?(?,0)
2f(x2)1?x2?2(x2?1)ln(x2?1) x2?(?,0) x22令h(x)?x?2(x?1)ln(x?1) x?(?,0)
1211?1),函数单调递增; h?(x)??2ln(x?1)?1,令h?(x)?0,x?(?,2e令h?(x)?0,x?(1?1,0),函数单调递减; e?h(x)max?h(12f(x2)21?1)??1 ???1,x2?(?,0)
x22eee?f(x2)?(
2?1)x2..................................................(12分) e(22)选修4-4:坐标系与参数方程
解:(Ⅰ)点P在直线l上,理由如下: 直
线
l:??32cos(??)6?,即
2?cos(??)?36?,亦即
3?cos???sin??3,?直线l的直角坐标方程为3x?y?3,易知点P在直
线l上........................(3分)
1?x??t?2?(t为参数),曲线C的普(Ⅱ)由题意,可得直线l的参数方程为??y?3?3t??2x2y2??1.将直线l的参数方程代入曲线C的普通方程,得通方程为24132122(?t)2?(3?t)?4,?5t2?12t?4?0,设两根为t1,t2,?t1?t2??,
2254144,?t1t2???0,故t1与t2异号,?PA?PB?t1?t2?(t1?t2)2?4t1t2?55?PAPB?t1t2??t1t2?45,
?PA?PB11.......................................(10???14.PAPBPAPB分)
(23)选修4-5:不等式选讲
解:(Ⅰ)因为f(x?2)?m?x,f(x?2)?0等价于x?m, 由x?m有解,得m?0,且其解集为x?m?x?m. 又f(x?2)?0的解集为??3,3?,故m?3.
所以f(x)?f(x?2)?0可化为:3?x?2?3?x?0,
???x?x?2?6.
①当x??2时,?x?x?2?6,?x??4,又x??2,??4?x??2; ②当?2?x?0时,?x?x?2?6,?2?6,?x?R,又?2?x?0,
??2?x?0;
③当m?0时,x?x?2?6,?x?2,又m?0,?0?x?2.
综上①、②、③得不等式f(x)?f(x?2)?0的解集为:x?4?x?2.......(5
分)
(Ⅱ)证明:a,b,c均为正实数,且满足a?b?c?3,因为
??b2c2a2???(a?b?c)abcb2c2a2?(?a)?(?b)?(?c)abc?b2c2a2??2?a?b?c??2(a?b?c)(当且仅当a?b?c?1时,取“=”),
?a?bc??所
以
b2c2a2???a?b?cabc,即
b2c2a2???3.........................................................(1abc0分)
共分享92篇相关文档