云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 新人教版八年级数学上册知识点总结归纳

新人教版八年级数学上册知识点总结归纳

  • 62 次阅读
  • 3 次下载
  • 2025/5/5 20:27:54

新人教版八年级上册数学知识点总结

,再减去一个周角,即得到边形的内角和为

证法2:从边形一个顶点作对角线,可以作个三角形内角和恰好是边形的内角和,等于证法3:在边形的一边上取一点与各个顶点相连,得内角和减去所取的一点处的一个平角的度数,即要点诠释:

.

个三角形,这

条对角线,并且边形被分成

.

个三角形,边形内角和等于这

.

个三角形的

(1)注意:以上各推导方法体现出将多边形问题转化为三角形问题来解决的基础思想。 (2)内角和定理的应用:

①已知多边形的边数,求其内角和; ②已知多边形内角和,求其边数。

知识点五:多边形的外角和公式

1.公式:多边形的外角和等于360°.

2.多边形外角和公式的证明:多边形的每个内角和与它相邻的外角都是邻补角,所以边形的内角和加外角和为

,外角和等于

.

注意:n边形的外角和恒等于360°,它与边数的多少无关。 要点诠释:

(1)外角和公式的应用:

①已知外角度数,求正多边形边数; ②已知正多边形边数,求外角度数.

(2)多边形的边数与内角和、外角和的关系:

①n边形的内角和等于(n-2)·180°(n≥3,n是正整数),可见多边形内角和与边数n有关,每增加1条边,内角和增加180°。

②多边形的外角和等于360°,与边数的多少无关。

知识点六:镶嵌的概念和特征

1、定义:用一些不重叠摆放的多边形把平面的一部分完全覆盖,通常把这类问题叫做用多边形覆盖平面(或平面镶嵌)。这里的多边形可以形状相同,也可以形状不相同。

2、实现镶嵌的条件:拼接在同一点的各个角的和恰好等于360°;相邻的多边形有公共边。 3、常见的一些正多边形的镶嵌问题:

三角形、全等三角形、轴对称、整式乘法和因式分解、分式 5

新人教版八年级上册数学知识点总结

(1)用正多边形实现镶嵌的条件:边长相等;顶点公用;在一个顶点处各正多边形的内角之和为360°。 (2)只用一种正多边形镶嵌地面对于给定的某种正多边形,怎样判断它能否拼成一个平面图形,且不留一点空隙?解决问题的关键在于正多边形的内角特点。当围绕一点拼在一起的几个正多边形的内角加在一起恰好组成一个周角360°时,就能铺成一个平面图形。事实上,正n边形的每一个内角为一个内角拼于一点,恰好覆盖地面,这样360°=

,由此导出k=

,要求k个正n边形各有=2+

,而k是正

整数,所以n只能取3,4,6。因而,用相同的正多边形地砖铺地面,只有正三角形、正方形、正六边形的地砖可以用。

注意:任意四边形的内角和都等于360°。所以用一批形状、大小完全相同但不规则的四边形地砖也可以铺成无空隙的地板,用任意相同的三角形也可以铺满地面。

(3)用两种或两种以上的正多边形镶嵌地面用两种或两种以上边长相等的正多边形组合成平面图形,关键是相关正多边形“交接处各角之和能否拼成一个周角”的问题。例如,用正三角形与正方形、正三角形与正六边形、正三角形与正十二边形、正四边形与正八边形都可以作平面镶嵌,见下图(1)、(2)、(3)、(4)、(5)、(6): 又如,用一个正三角形、两个正方形、一个正六边形结合在一起恰好能够铺满地面,因为它们的交接处各角之和恰好为一个周角360°。

规律方法指导

1.内角和与边数成正比:边数增加,内角和增加;边数减少,内角和减少. 每增加一条边,内角的和就增加180°(反过来也成立),且多边形的内角和必须是180°的整数倍.

2.多边形外角和恒等于360°,与边数的多少无关.3.多边形最多有三个内角为锐角,最少没有锐角(如矩形);多边形的外角中最多有三个钝角,最少没有钝角.

4.在运用多边形的内角和公式与外角的性质求值时,常与方程思想相结合,运用方程思想是解决本节问题的常用方法.

5.在解决多边形的内角和问题时,通常转化为与三角形相关的角来解决. 三角形是一种基本图形,是研究复杂图形的基础,同时注意转化思想在数学中的应用.

经典例题透析

类型一:多边形内角和及外角和定理应用

1.一个多边形的内角和等于它的外角和的5倍,它是几边形?

三角形、全等三角形、轴对称、整式乘法和因式分解、分式 6

新人教版八年级上册数学知识点总结

总结升华:本题是多边形的内角和定理和外角和定理的综合运用. 只要设出边数程,求出的值即可,这是一种常用的解题思路. 举一反三:

,根据条件列出关于方

【变式1】若一个多边形的内角和与外角和的总度数为1800°,求这个多边形的边数.

【变式2】一个多边形除了一个内角外,其余各内角和为2750°,求这个多边形的内角和是多少? 【答案】设这个多边形的边数为,这个内角为

【变式3】一个多边形的内角和与某一个外角的度数总和为1350°,求这个多边形的边数。

类型二:多边形对角线公式的运用

【变式1】一个多边形共有20条对角线,则多边形的边数是( ). A.6 B.7 C.8 D.9 【变式2】一个十二边形有几条对角线。

总结升华:对于一个n边形的对角线的条数,我们可以总结出规律

条,牢记这个公式,以后只要用相应

的n的值代入即可求出对角线的条数,要记住这个公式只有在理解的基础之上才能记得牢。

类型三:可转化为多边形内角和问题

【变式1】如图所示,∠1+∠2+∠3+∠4+∠5+∠6=__________.

【变式2】如图所示,求∠A+∠B+∠C+∠D+∠E+∠F的度数。

三角形、全等三角形、轴对称、整式乘法和因式分解、分式 7

新人教版八年级上册数学知识点总结

类型四:实际应用题

4.如图,一辆小汽车从P市出发,先到B市,再到C市,再到A市,最后返回P市,这辆小汽车共转了多少度角?

思路点拨:根据多边形的外角和定理解决. 举一反三:

【变式1】如图所示,小亮从A点出发前进10m,向右转15°,再前进10m,又向右转15°,?,这样一直走下去,当他第一次回到出发点时,一共走了__________m.

【变式2】小华从点A出发向前走10米,向右转36°,然后继续向前走10米,再向右转36°,他以同样的方法继续走下去,他能回到点A吗?若能,当他走回点A时共走了多少米?若不能,写出理由。

【变式3】如图所示是某厂生产的一块模板,已知该模板的边AB∥CF,CD∥AE. 按规定AB、CD的延长线相交成80°角,因交点不在模板上,不便测量. 这时师傅告诉徒弟只需测一个角,便知道AB、CD的延长线的夹角是否合乎规定,你知道需测哪一个角吗?说明理由.

思路点拨:本题中将AB、CD延长后会得到一个五边形,根据五边形内角和为540°,

又由AB∥CF,CD∥AE,可知∠BAE+∠AEF+∠EFC=360°,从540°中减去80°再减去360°,剩下∠C的度数为100°,所以只需测∠C的度数即可,同理还可直接测∠A的度数.

三角形、全等三角形、轴对称、整式乘法和因式分解、分式 8

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

新人教版八年级上册数学知识点总结 ,再减去一个周角,即得到边形的内角和为证法2:从边形一个顶点作对角线,可以作个三角形内角和恰好是边形的内角和,等于证法3:在边形的一边上取一点与各个顶点相连,得内角和减去所取的一点处的一个平角的度数,即要点诠释: . 个三角形,这条对角线,并且边形被分成. 个三角形,边形内角和等于这. 个三角形的(1)注意:以上各推导方法体现出将多边形问题转化为三角形问题来解决的基础思想。 (2)内角和定理的应用: ①已知多边形的边数,求其内角和; ②已知多边形内角和,求其边数。 知识点五:多边形的外角和公式1.公式:多边形的外角和等于360°.

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com