当前位置:首页 > 第十三章 极限
(2)函数y=f(x)的图象如图所示.
(3)函数在x=1处不连续,这是因为lim?f(x)?2?0?lim?f(x).
x?1x?119.(12分)已知lim求limb?aa?bxxx?1x?1ax?bx?1x?12=3,
x?1的值.
x??解 依题意可知ax2+bx+1中必有x-1这个因式,
?a+b+1=0 又limax?bx?1x?12x?1?lim(x?1)(ax?1)x?1x?1?lim(ax?1)?a?1?3,
x?1?a=4,将a=4代入a+b+1=0,得b=-5,
45?lim(?5)?44?(?5)xxx?1x?1?5?(??limx??)x?1x??4?(?45??5. ?1)x?120.(12分)已知数列{an}中,a2=a+2 (a为常数),Sn是{an}的前n项和,且Sn是nan与na的等差中项. (1)求a1,a3;
(2)猜想an的表达式,并用数学归纳法证明; (3)求证:以(an,Snn?1)为坐标的点
Pn(n=1,2,?)都落在同一直线上.
·n,
(1)解 由已知得:Sn=
nan?na2?an?a2当n=1时,S1=a1,则2a1=a1+a,得a1=a. 当n=3时,S3=a1+a2+a3, 则2(a1+a2+a3)=3(a3+a),
?2(a+a+2+a3)=3(a3+a),?a3=a+4. (2)解 由a1=a,a2=a+2,a3=a+4,…, 猜想an=a+2(n-1).
证明:①当n=1时,左边=a1=a,右边=a+2(1-1)=a,
33
则当n=1时,等式成立;
当n=2时,左边=a2=a+2,右边=a+2(2-1)=a+2, 故当n=2时,等式成立.
*
②假设当n=k(k∈N,k≥2)时,等式成立, 即ak=a+2(k-1),则当n=k+1时, ak+1=Sk+1-Sk=
ak?1?a2(k?1)?ak?a2k,
?2ak+1=(ak+1+a)(k+1)-(ak+a)k, ?(k-1)ak+1=kak-a, 由k≥2,得ak+1=
kk?1ak?ak?1,
将ak=a+2(k-1)代入,得 ak+1=
kk?1[a+2(k-1)]-
ak?1
=
(k?1)a?2k(k?1)k?1=a+2[(k+1)-1],
?当n=k+1时,等式也成立.
由①②可知,对任何正整数n,等式an=a+2(n-1)都成立. (3)证明 当n≥2时,≧an=a+2(n-1) ?Sn=则
SnnSnnan?a2·n=
2a?2(n?1)2·n=(a+n-1)n,
=a+n-1,
S11?(?1)?(?1)=n-1,an-a1=2(n-1).
(Snn?1)?(S11?1)??
n?12(n?1)an?a1?12.?点Pn(n=1,2,3…)都落在同一直线上.
21.(12分)已知数列{an}的首项a1=1,其前n项和为Sn,且对任何正整数n,有n,an,Sn成等差数列.
(1)求证:数列{Sn+n+2}成等比数列; (2)求数列{an}的通项公式;
34
(3)比较an与n2-1的大小,并证明你的结论. (1)证明 ∵n,an,Sn成等差数列,∴2an=n+Sn 又an=Sn-Sn-1(n≥2).
∴2(Sn-Sn-1)=n+Sn,即Sn=2Sn-1+n. ∴Sn+n+2=2Sn-1+2(n+1)=2[Sn-1+(n-1)+2] 且S1+1+2=4≠0,所以数列{Sn+n+2}成等比数列. (2)解 Sn+n+2=4·2n-1=2n+1,即Sn=2n+1-n-2,
∴n≥2时,an=Sn-Sn-1=2n+1-n-2-[2n-(n-1)-2]=2n-1,又a1=1=21-1. 故对任意正整数n,an=2n-1.
(3)解 an=2n-1,令f(n)=n2-1,a1=1,f(1)=0, a1>f(1),a2=3,f(2)=3,a2=f(2),a3<f(3),a4=f(4) a5>f(5).
猜想n≥5时,an>f(n). 证明如下:
①由上知n=5时猜想成立
②假设n=k(k∈N*,k≥5)时猜想成立,
2
2
即2k-1>k-1,即2k>k, 那么2k-1=2·2k-1>2k-1 ≧k2-1-2k=(k-1)2-2>0, ?k2+k2-1>k2+2k=(k+1)2-1
?n=k+1时结论成立.?n∈N*,n≥5时结论成立
+1
2
35
?x?1?3?x?1?22.(14分)已知函数f(x)=?b?2ax?2???(x?1)(x?1) (x?1)(1)求limf(x);
x?0(2)若limf(x)存在,求a,b的值;
x?1(3)若函数f(x)在x=1处连续,求a,b所满足的条件. 解 (1)≧x→0时,
3
x?1x?1
的分子、分母都有极限-1,
?limf(x)=1.
x?0(2)若limf(x)存在,则lim?f(x)=lim?f(x),
x?1x?1x?1而lim?f(x)=lim?(ax+2)=a+2.
x?1x?12
lim?f(x)=lim?x?1x?1x?1(3x?1)(x?1)3?limx?1x2?3x?1??32.
x?1?a+2=?a=-1232,
,b可为任意实数.
(3)若f(x)在x=1处连续, 则lim?f(x)=lim?f(x)=f(1),
x?1x?1则a=-
12,b=
32.
36
37
共分享92篇相关文档