当前位置:首页 > 2017年四川省泸州市中考数学试卷及详细解析考点梳理
(2)直线AB向上平移10个单位后得到直线l的解析式为:y1=﹣2x+8. 联立直线l和反比例函数解析式成方程组,
,解得:
,
,
∴直线l与反比例函数图象的交点坐标为(1,6)和(3,2). 画出函数图象,如图所示.
观察函数图象可知:当0<x<1或x>3时,反比例函数图象在直线l的上方, ∴使y1<y2成立的x的取值范围为0<x<1或x>3.
【点评】本题考查了反比例函数与一次函数的交点问题、反比例函数图象上点的坐标特征、待定系数法求一次函数解析式以及解方程组,解题的关键是:(1)根据点A、B的坐标利用待定系数法求出直线AB的解析式;(2)联立两函数解析式成方程组,通过解方程组求出两函数图象的交点坐标.
六、本大题共两个小题,每小题12分,共24分
24.(12分)(2017?泸州)如图,⊙O与Rt△ABC的直角边AC和斜边AB分别相切于点C、D,与边BC相交于点F,OA与CD相交于点E,连接FE并延长交AC边于点G.
(1)求证:DF∥AO;
(2)若AC=6,AB=10,求CG的长.
第21页(共39页)
【考点】MC:切线的性质
【分析】(1)欲证明DF∥OA,只要证明OA⊥CD,DF⊥CD即可; (2)过点作EM⊥OC于M,易知【解答】(1)证明:连接OD.
∵AB与⊙O相切与点D,又AC与⊙O相切与点, ∴AC=AD,∵OC=OD, ∴OA⊥CD, ∴CD⊥OA, ∵CF是直径, ∴∠CDF=90°, ∴DF⊥CD, ∴DF∥AO.
=,只要求出EM、FM、FC即可解决问题;
(2)过点作EM⊥OC于M, ∵AC=6,AB=10, ∴BC=∴AD=AC=6, ∴BD=AB﹣AD=4, ∵BD2=BF?BC, ∴BF=2,
∴CF=BC﹣BF=6.OC=CF=3, ∴OA=
∵OC2=OE?OA,
第22页(共39页)
=8,
=3,
∴OE=,
∵EM∥AC, ∴
=
=
=,
,
∴OM=,EM=,FM=OF+OM=∴
=
=
=,
∴CG=EM=2.
【点评】本题考查切线的性质、直径的性质、切线长定理、勾股定理、平行线分线段成比例定理等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题.
25.(12分)(2017?泸州)如图,已知二次函数y=ax2+bx+c(a≠0)的图象经过A(﹣1,0)、B(4,0)、C(0,2)三点. (1)求该二次函数的解析式;
(2)点D是该二次函数图象上的一点,且满足∠DBA=∠CAO(O是坐标原点),求点D的坐标;
(3)点P是该二次函数图象上位于一象限上的一动点,连接PA分别交BC,y轴与点E、F,若△PEB、△CEF的面积分别为S1、S2,求S1﹣S2的最大值.
第23页(共39页)
【考点】HF:二次函数综合题
【分析】(1)由A、B、C三点的坐标,利用待定系数法可求得抛物线解析式; (2)当点D在x轴上方时,则可知当CD∥AB时,满足条件,由对称性可求得D点坐标;当点D在x轴下方时,可证得BD∥AC,利用AC的解析式可求得直线BD的解析式,再联立直线BD和抛物线的解析式可求得D点坐标;
(3)过点P作PH∥y轴交直线BC于点H,可设出P点坐标,从而可表示出PH的长,可表示出△PEB的面积,进一步可表示出直线AP的解析式,可求得F点的坐标,联立直线BC和PA的解析式,可表示出E点横坐标,从而可表示出△CEF的面积,再利用二次函数的性质可求得S1﹣S2的最大值. 【解答】解:
(1)由题意可得,解得,
∴抛物线解析式为y=﹣x2+x+2;
(2)当点D在x轴上方时,过C作CD∥AB交抛物线于点D,如图1,
∵A、B关于对称轴对称,C、D关于对称轴对称, ∴四边形ABDC为等腰梯形, ∴∠CAO=∠DBA,即点D满足条件, ∴D(3,2);
当点D在x轴下方时, ∵∠DBA=∠CAO, ∴BD∥AC,
第24页(共39页)
共分享92篇相关文档