当前位置:首页 > 2017年四川省泸州市中考数学试卷及详细解析考点梳理
【点评】本题考查了垂径定理,利用勾股定理,垂径定理是解题关键.
7.(3分)(2017?泸州)下列命题是真命题的是( ) A.四边都相等的四边形是矩形 B.菱形的对角线相等
C.对角线互相垂直的平行四边形是正方形 D.对角线相等的平行四边形是矩形 【考点】O1:命题与定理
【分析】根据矩形的判定定理,菱形的性质,正方形的判定判断即可得到结论. 【解答】解:A、四边都相等的四边形是菱形,故错误; B、矩形的对角线相等,故错误;
C、对角线互相垂直的平行四边形是菱形,故错误; D、对角线相等的平行四边形是矩形,正确, 故选D.
【点评】此题考查了命题与定理,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.
8.(3分)(2017?泸州)下列曲线中不能表示y是x的函数的是( )
A. B. C. D.
【考点】E2:函数的概念
【分析】函数是在一个变化过程中有两个变量x,y,一个x只能对应一个y. 【解答】解:当给x一个值时,y有唯一的值与其对应,就说y是x的函数,x是自变量.
选项C中的图形中对于一个自变量的值,图象就对应两个点,即y有两个值与x的值对应,因而不是函数关系. 故选C.
第9页(共39页)
【点评】考查了函数的概念,理解函数的定义,是解决本题的关键.
9.(3分)(2017?泸州)已知三角形的三边长分别为a、b、c,求其面积问题,中外数学家曾经进行过深入研究,古希腊的几何学家海伦(Heron,约公元50年)给出求其面积的海伦公式S=
,其中p=
;我国南宋
时期数学家秦九韶(约1202﹣1261)曾提出利用三角形的三边求其面积的秦九韶公式S=其面积是( ) A.
B.
C.
D.
,若一个三角形的三边长分别为2,3,4,则
【考点】7B:二次根式的应用
【分析】根据题目中的秦九韶公式,可以求得一个三角形的三边长分别为2,3,4的面积,从而可以解答本题. 【解答】解:∵S=
,
∴若一个三角形的三边长分别为2,3,4,则其面积是:S=
=
故选B.
【点评】本题考查二次根式的应用,解答本题的关键是明确题意,求出相应的三角形的面积.
10.(3分)(2017?泸州)已知m,n是关于x的一元二次方程x2﹣2tx+t2﹣2t+4=0的两实数根,则(m+2)(n+2)的最小值是( ) A.7
B.11 C.12 D.16
,
【考点】AB:根与系数的关系
【分析】由根与系数的关系可得出m+n=2t、mn=t2﹣2t+4,将其代入(m+2)(n+2)=mn+2(m+n)+4中可得出(m+2)(n+2)=(t+1)2+7,由方程有两个实数根结合根的判别式可求出t的取值范围,再根据二次函数的性质即可得出(m+2)(n+2)
第10页(共39页)
的最小值.
【解答】解:∵m,n是关于x的一元二次方程x2﹣2tx+t2﹣2t+4=0的两实数根, ∴m+n=2t,mn=t2﹣2t+4,
∴(m+2)(n+2)=mn+2(m+n)+4=t2+2t+8=(t+1)2+7. ∵方程有两个实数根,
∴△=(﹣2t)2﹣4(t2﹣2t+4)=8t﹣16≥0, ∴t≥2,
∴(t+1)2+7≥(2+1)2+7=16. 故选D.
【点评】本题考查了根与系数的关系、根的判别式以及二次函数的最值,根据根与系数的关系找出(m+2)(n+2)=(t+1)2+7是解题的关键.
11.(3分)(2017?泸州)如图,在矩形ABCD中,点E是边BC的中点,AE⊥BD,垂足为F,则tan∠BDE的值是( )
A. B. C. D.
【考点】LB:矩形的性质;T7:解直角三角形
【分析】证明△BEF∽△DAF,得出EF=AF,EF=AE,由矩形的对称性得:AE=DE,得出EF=DE,设EF=x,则DE=3x,由勾股定理求出DF=三角函数定义即可得出答案.
【解答】解:∵四边形ABCD是矩形, ∴AD=BC,AD∥BC, ∵点E是边BC的中点, ∴BE=BC=AD, ∴△BEF∽△DAF,
=2
x,再由
第11页(共39页)
∴=,
∴EF=AF, ∴EF=AE,
∵点E是边BC的中点, ∴由矩形的对称性得:AE=DE, ∴EF=DE,设EF=x,则DE=3x, ∴DF=∴tan∠BDE=故选:A.
【点评】本题考查了相似三角形的判定和性质,矩形的性质,三角函数等知识;熟练掌握矩形的性质,证明三角形相似是解决问题的关键.
12.(3分)(2017?泸州)已知抛物线y=x2+1具有如下性质:该抛物线上任意一点到定点F(0,2)的距离与到x轴的距离始终相等,如图,点M的坐标为(3),P是抛物线y=x2+1上一个动点,则△PMF周长的最小值是( )
,
=2=
x, =
;
A.3 B.4 C.5 D.6
【考点】H3:二次函数的性质;K6:三角形三边关系
【分析】过点M作ME⊥x轴于点E,交抛物线y=x2+1于点P,由PF=PE结合三角形三边关系,即可得出此时△PMF周长取最小值,再由点F、M的坐标即可得出MF、ME的长度,进而得出△PMF周长的最小值.
【解答】解:过点M作ME⊥x轴于点E,交抛物线y=x2+1于点P,此时△PMF周长最小值, ∵F(0,2)、M(
,3),
第12页(共39页)
共分享92篇相关文档