当前位置:首页 > 小学五年级数学下册《长方体和正方体》培优训练题
.
长方体和正方体的体积 知识点 1、体积和容积。
(1)体积:物体所占空间的大小 (2)容积:容器所能容纳物体的体积
像这个长方体木箱的体积除了里面能容纳物体的体积外,还有做成木箱的木板的体积。一个物体的体积要比一个物体的容积大,因为体积还包括自身材料的体积。 2、体积(容积)单位。
(1)用列表的形式来表述体积单位的大小,以利于记忆。 单位名称 意义
相当的实物
1立方厘米
棱长是1厘米的正方体,体积是1立方厘米
约为一个手指尖的大小
1立方分米
棱长是1分米的正方体,体积是1立方分米
约为一个粉笔盒的大小
-
.
1立方米
棱长是1米的正方体,体积是1立方米
用3根1米长的木条做成互相垂直的架子放在墙角所圈定的空间的大小
体积与容积单位之间的关系:1立方厘米=1毫升 1立方分米=1升
升和毫升之间的进率是1000,因为1升是1立方分米,1毫升是1立方厘米。升和毫升相比,升是高级单位,毫升是低级单位,把高级单位的数量换算成低级单位的数量,都要乘相应的进率。
3、因为长方体的体积都是由它的长、宽、高决定的,它的体积=长×宽×高。正方体是特殊的长方体,长=宽=高,因而它的体积是由棱长决定的,体积=棱长×棱长×棱长。因为长方体和正方体的底面积是两条棱长决定的,即长方体底面积=长×宽;正方体的底面积=棱长×棱长;所以长方体和正方体的体积又可以说是由底面积和高决定的,它们的体积=底面积×高。
(1)长方体的体积=长×宽×高 (2)正方体的体积=棱长×棱长×棱长 (3)长方体的体积=底面积×高
4、求这根长方体木料的体积要用“底面积×高”,从中间截成两段,表面积实质上增加了两个底面,如果是截成三段,就是截了两次,增加了四个面。也就是说每截一次,增加两个面。 5、综合运用体积单位、长度单位的知识。将一个大的形体分成一个小的形体。将小正方体紧紧地排成一排,能排多少米,实际上就是将这些小正方体的棱长加起来,看有多长。
-
.
《长方体和正方体》培优训练题 一、填空:
1、一个正方体的底面周长是20厘米,它的表面积是( )平方厘米,体积是( )立方厘米。 2、将三个棱长是4厘米的正方体拼成一个长方体,这个长方体的体积是( )立方厘米,表面积是( )平方厘米。
3、把一个棱长10厘米的正方体,分成两个完全相同的长方体,这两个长方体的体积之和是( ) 立方厘米,表面积之和是( ) 平方厘米。
4、把一个长6厘米,宽5厘米,高4厘米的长方体木块锯成两个小长方体,表面积至少增加( )平方厘米,至多增加( )平方厘米。
5、把一个横截面的边长为5厘米,长为2米的木料锯成4段后,表面积比原来增加了( ) 平方厘米。
6、把一个长16厘米,宽6厘米,高8厘米的大长方体切成两个小长方体,这两个小长方体的表面积的和最大是( )平方厘米。
7、一个正方体的表面积是24平方分米,把它分成两个完全相同的长方体,每个长方体的表面积是( )。
8、一个长2米的长方体钢材截成三段,表面积比原来增加2.4平方分米,这根钢材原来的体积是( )。
9、一个长方体,如果长减少2厘米,就成为一个正方体,这时,正方体的表面积是96平方厘米,原来长方体的体积是( )。
10、一个长方体,如果高减少3厘米,就成为一个正方体。这时表面积比原来减少了96
-
.
平方厘米。原来长方体的体积是( )立方厘米。
11、一种正方体的棱长是5厘米,用4个这样的正方体拼成一个大长方体。大长方体的表面积可能是( )平方厘米,也可能是( )平方厘米。
12、将一个表面涂有红色的长方体分割成若干个体积为1立方厘米的小正方体,其中一点红色都没有的小正方体只有3块。原来长方体的体积是( )立方厘米。 二、解决问题:
1、把110厘米长的铁丝焊成一个长方体框架,长是宽的2倍,宽是高的1.5倍,这个长方体的体积是多少?
2、一个长方体蓄水池,长12米,宽8米,高4米,如果将四壁和地面用4平方分米的正方形瓷砖贴上,需要多少块?
3、一个长方体的长、宽、高分别是11厘米、6厘米、4厘米,如果高增加3厘米,表面积增加多少平方厘米?
4、一个正方体木块,表面积是30平方分米,如果把它据成大小一样的8个小正方体木块,每个小木块的表面积是多少?
5、要做一个正方形管口周长是28厘米,长2米的通气管子10根,至少需要铁皮多少平
-
共分享92篇相关文档