当前位置:首页 > 2019-2020学年湖北省黄冈市麻城市思源学校八年级(上)月考数学试卷(9月份)
证明:在△??????和△??????中, {∠??=∠??∠??????????==∠?????????? ,
∴ △???????△??????(??????); ∵ △???????△??????, ∴ ????=????, ∴ ∠??????=∠??????. 22. 【答案】
在△??????中,∠??????=60°
,∠??????=40°
, ∴ ∠??=180°
?∠???????∠??????=80°
, ∵ ????为∠??????,????为∠??????的角平分线, ∴ ∠??????=1∠??????=1×60°=30°
22, ∠??????=1(180°
?∠??????)=1×140°=70°
22,
∴ ∠??=180°
?∠???????∠???????∠??????=180°
?30°
?40°
?70°
=40°
,∴ ∠??=80°
,∠??=40°
;
通过第(1)的计算,得到∠??=2∠??,理由如下: ∵ ∠??????=∠??+∠??????,
∴ ∠??????+∠??????=∠??+∠??????+∠??????,∠??????=∠??+∠??????, 又∵ ????平分∠??????,????平分∠??????, ∴ ∠??????=∠??????,∠??????=∠??????,
∴ ∠??=2(∠???????∠??????),∠??=∠???????∠??????, ∴ ∠??=2∠??. 【考点】
21
三角形的外角性质 三角形内角和定理 【解析】
(1)根据三角形内角和定理,已知∠??????=60,∠??????=40,易求∠??,根据角平分线定义和外角的性质即可求得∠??度数,
(2)根据三角形内角和定理以及角平分线性质,先求出∠??的等式,再与∠??比较即可解答. 【解答】
在△??????中,∠??????=60,∠??????=40, ∴ ∠??=180?∠???????∠??????=80, ∵ ????为∠??????,????为∠??????的角平分线, ∴ ∠??????=∠??????=×60=30, ∠??????=(180?∠??????)=×140=70,
∴ ∠??=180?∠???????∠???????∠??????=180?30?40?70=40, ∴ ∠??=80,∠??=40;
通过第(1)的计算,得到∠??=2∠??,理由如下: ∵ ∠??????=∠??+∠??????,
∴ ∠??????+∠??????=∠??+∠??????+∠??????,∠??????=∠??+∠??????, 又∵ ????平分∠??????,????平分∠??????, ∴ ∠??????=∠??????,∠??????=∠??????,
∴ ∠??=2(∠???????∠??????),∠??=∠???????∠??????, ∴ ∠??=2∠??. 23.
°
°
°
°
°
°
°
°
°
°
°
°
°
°
1212°°
12°
12°°
试卷第!异常的公式结尾页,总25页 22
【答案】
(1)①证明:∵ ????⊥????,????⊥????, ∴ ∠??????=∠??????=90, ∵ ∠??????=90,
°
°
∴ ∠??????+∠??????=90°
,∠??????+∠??????=90°
, ∴ ∠??????=∠??????, 在△??????和△??????中,
∠??????=∠??????, ∠??????=∠??????,
{????=????,∴ △???????△??????(??????). ②证明:由①知:△???????△??????, ∴ ????=????,????=????, ∵ ????+????=????, ∴ ????+????=????. (2)解:????=?????????, 理由:∵ ????⊥????,????⊥????, ∴ ∠??????=∠??????=90°, ∴ ∠??????+∠??????=90°, ∵ ∠??????=90°
, ∴ ∠??????+∠??????=90°
, ∴ ∠??????=∠??????, 在△??????和△??????中,
∠??????=∠??????, ∠??????=∠??????,
{????=????,
23
∴ △???????△??????(??????), ∴ ????=????,????=????, ∴ ????=?????????=?????????. 【考点】 等腰直角三角形 全等三角形的性质 【解析】
(1)①由已知推出∠??????=∠??????=90,因为∠??????+∠??????=90,∠??????+∠??????=90,推出∠??????=∠??????,根据??????即可得到答案; ②由①得到????=????,????=????,即可求出答案;
(2)与(1)证法类似可证出∠??????=∠??????,能推出△???????△??????,得到????=
°
°
°
????,????=????,代入已知即可得到答案.
【解答】
(1)①证明:∵ ????⊥????,????⊥????, ∴ ∠??????=∠??????=90, ∵ ∠??????=90,
∴ ∠??????+∠??????=90,∠??????+∠??????=90, ∴ ∠??????=∠??????, 在△??????和△??????中, ∠??????=∠??????,
∠??????=∠??????,
{????=????,∴ △???????△??????(??????). ②证明:由①知:△???????△??????,
°
°
°
°
试卷第!异常的公式结尾页,总25页 24
共分享92篇相关文档