当前位置:首页 > 《概率论与数理统计》第三版,科学出版社 - 课后习题答案
y?1x?y?11FY(y)?P{Y?y}?P{2X?1?y}?P{X?}??2e2dx ??22?2对FY(y)求关于y的导数,得fY(y)?1e2?y?(??,?)
y?12)?22((y?11)??e222??(y?1)28
(2)设FY(y),fY(y)分别为随机变量Y的分布函数和概率密度函数,则
当y?0时,FY(y)?P{Y?y}?P{e?X当y?0时,有
FY(y)?P{Y?y}?P{e?X?y}?P{?X?lny}?P{X??lny}????y}?P{?}?0
?lny1e2??x22dx
对FY(y)求关于y的导数,得
(lny)?1?(?lny)?1e2(?lny)??e2??fY(y)??2?2?y??022y>0
y?0
(3)设FY(y),fY(y)分别为随机变量Y的分布函数和概率密度函数,则
当y?0时,FY(y)?P{Y?y}?P{X2?y}?P{?}?0 当y>0时,FY(y)?P{Y?y}?P{X2?y}?P{?y?X?y}??y?y1?x2edx 2?2
对FY(y)求关于y的导数,得
?1?(e?fY(y)??2???0y)22(y)??1e2??(?y)22(?y)??1e2?y?(lny)22y>0
y?0
2.23 ∵X?U(0,?)∴
?1?fX(x)?????00?x??
其它
(1)
当2ln??y??时
FY(y)?P{Y?y}?P{2lnX?y}?P{lnX2?y}?P{?}?0
当???y?2ln?时yFY(y)?P{Y?y}?P{2lnX?y}?P{lnX2?y}?P{X2?ey}?P{X?ey}??yy?1212e?(e)??fY(y)???2??0?e210?dx
对FY(y)求关于y的导数,得到
???y?2ln?
2ln??y??(2)
当y?1或 y?-1时,FY(y)?P{Y?y}?P{cosX?y}?P{?}?0 当?1?y?1时,FY(y)?P{Y?y}?P{cosX?y}?P{X?arccosy}???1arccosy?dx
对FY(y)求关于y的导数,得到
1?1??(arccosy)??fY(y)????1?y2?0??1?y?1
其它
(3)当y?1或 y?0时FY(y)?P{Y?y}?P{sinX?y}?P{?}?0
当0?y?1时,
FY(y)?P{Y?y}?P{sinX?y}?P{0?X?arcsiny}?P{??arcsiny?X??}??arcsiny10?dx???1??arcsiny?dx
对FY(y)求关于y的导数,得到
12?1??arcsiny?(??arcsiny)???fY(y)????1?y2?0?0?y?1
其它
第三章 随机向量
3.1 P{1 3 128 Y X 2 331 2 0 1cc=3 c53245223 3.4(1)a=1 9cc=2 c52450 (2) 5 12(3) P{(X,Y)?D}??dy?1?y1111(6?x?y)dx??[(6?y)x?x2]|dy 000990211111111188 ??(y2?6y?5)dy?(y3?3y2?5y)|???00922962932711?y3.5解:(1) F(x,y)??y0?x0yx2e?(2u?v)dudv??e?vdv?2e?2udu?(?e?v|0)(?e?2u|0)?(1?e?y)(1?e?2x)00yx(2) P(Y?X)????2e0??2xx0??0x2e?(2x?y)dxdy??2e?2xdx?e?vdy??2e?2x(?e?y|0)dx000??x?2?3x?21(1?e)dx??(2e?2x?2e?3x)dx?(?e?2x|?)?e|?1?? 000333?x3.6 2?a1r?d?dr 解:P(x?y?a)???222??00?(1?r2)2?(1?x?y)x2?y2?a2222
共分享92篇相关文档