当前位置:首页 > 2017年全国初中数学联合竞赛(四川初三初赛)试题参考答案及评分标准
2017年全国初中数学联合竞赛(四川初赛)
试题参考答案及评分标准
说明:评阅试卷时,请依据本评分标准.选择题和填空题只设7分和0分两档;解答题,请严格按照本评分标准规定的评分档次给分,不要再增加其他中间档次.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.
一、选择题(本题满分42分,每小题7分)
1、B 2、C 3、D 4、A 5、B 6、C 二、填空题(本题满分28分,每小题7分)
7、3 8、40 9、
?1 10、4 9
三、(本大题满分20分)
11、已知关于x的一元二次方程x2?kx?5?0与x2?5x?k?0只有一个公共的实根,求关于x的方程|x2?kx|?|k|所有的实根之和。
解:设x2?kx?5?0与x2?5x?k?0的公共实根为?, 则??2?k??5?0,??2?5??k?0, ············································ (5分) 两式相减,得(k?5)???(k?5)??0. ········································· (10分) 因为当k??5时两方程相同,有两个公共的实根,不合题意.所以k≠?5. 因此???1.从而求得k?6. ················································ (15分)
2222
所以方程|x?kx|?|k|即为|x?6x|?6,x?6x?6或x?6x??6. 显然两方程都有实根,因此方程所有实根之和是?12. ············ (20分) 四、(本大题满分25分)
12、如图,已知圆O的直径AB与CD互相垂直,E为OB中点,CE的延长线交
DF圆O于G,AG交CD于F,求的值。
CFC解:设OE?a,则OA?OB?OC?OD?2a,CE?5a, 因为△COE∽△CGD, OEHBACOOECE所以??,?FCGGDCDGCO?CD2a?4a85D所以CG???a,?
5CE5a35a。 ················································ (10分)?5过G作GH⊥AB于点H,则△COE∽△GHE,
COOECE5所以???,?
GHHEGE36318所以GH?a,HE?a,于是AH?a。?
555所以EG?CG?CE?2017年全国初中数学联赛初赛试题答案 (第1页 共 3 页)
由△AOF∽△AHG,得所以OF?
OFAO5??,?HGAH92a。 ······························································· (20分)?348DF1从而DF?a,FC?a。所以?。 ······························ (25分)
33FC2法2:连结BG、AC。设OE?BE?a,则OA?OB?OC?OD?2a,CE?5a,
ACAECE因为△ACE∽△GBE,所以??,又AC?22a,
GBGEBE8所以BG?a。 ····························································· (10分)
5在Rt△ABG中,由勾股定理可得
C872AG?AB2?BG2?16a2?a2?a。
55OEBAAOOF又因为△AOF∽△AGB,所以?,
AGBGFG82a?aDAO?BG25所以OF???a。 ···································· (20分)
AG372a548DF1从而DF?a,FC?a。所以?。 ······························ (25分)
33FC2法3:设OE?a,则OA?OB?OC?OD?2a,CE?5a, C因为△COE∽△CGD,
COOECE所以??,?OEBACGGDCDOE?CDa?4a45F所以DG???a,?HG5CE5aDCO?CD2a?4a85CG???a, ·········································· (10分)?
5CE5a过G作GH⊥CD于点H,则△DGH∽△DCG,
DGDHGH所以??,
DCDGCG322162aa2DG4DG?CG585可得DH???a,GH???a,
4a4a5DC5DCAOOF由△AOF∽△GHF,得?,?
GHFHOF546所以?,又OF?FH?2a?a?a,?
55FH42所以OF?a。 ······························································· (20分)?
32017年全国初中数学联赛初赛试题答案 (第2页 共 3 页)
48DF1a,FC?a。所以?。 ······························ (25分) 33FC2五、(本大题满分25分)
a2b213、已知a、b、c、d、x、y、z、w是互不相等的非零实数,且22??
ay?b2x2从而DF?
abcdb2c2c2d2a2b2c2d2??.求2?2?2?2的值.
b2z2?c2y2c2w2?d2z2xyzwyzxw解:将每个已知分式分子分母交换,得
a2y2?b2x2b2z2?c2y2c2w2?d2z2xyzw???.(?) ·············· (5分)?a2b2b2c2c2d2abcd即x2a?y2y2z2z2w2xzyw2b2?b2?c2?c2?d2,易得a?±c,?b?±d. ·········设zc?u,?wd?v,?当xyxa??u,b?v或a?u,yb??v时,?22则由zc?wxyzw2d2?得,u2?v2??u2abcdv2.?
显然不可能成立,舍去。 ··················································当xa?u,yb?v或xya??u,b??v时,?则由z2c?w2xyzw2d2?abcd得,u2?v2?u2v2. ···································而a2b2c2d2xyzw2(11u2?v22?2?2?2?u2?v2)?2u2v2?2. ····················2017年全国初中数学联赛初赛试题答案 (第3页 共 3 页)
10分)?
15分)?20分)?
25分)
( ( ( (
共分享92篇相关文档