当前位置:首页 > 内蒙古通辽实验中学高二数学上学期第一次月考试题 文
内蒙古通辽实验中学2018-2019学年高二数学上学期第一次月考试题
文
第I卷(选择题 ,共60分)
一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 不等式
1?x?0的解集是( ) x?3A.{x|x?1或x>3} B.{x|x?1或x?3} C.{x|1?x<3} D.{x|1≤x≤3}
22a?b2aba?ba?ba?b 2.若a,b?R,则下列结论:①,②ab?③??2a?b222?④b?a?a?b,其中正确的个数是 ( )
abA.1
B.2 C.3 D.4
3.已知等差数列{an}满足:a6=10,a12=34,则数列{an}的公差为( ) A.8 B.6 C.4 D.2
4.在△ABC中,角A,B,C所对的边分别为a,b,c,若a=6?1,b=3,c=2,则
A=( )
A.
ππππ B. C. D. 6432
5.在等比数列{an}中,若a2a5a8=-27,则a3a7=( ) A.-9 B.6 C.-12 D.9
6. 在△ABC中,已知b=20,c=103,C=60°,则此三角形的解的情况是( ) A.有一解 B.有两解 C.无解 D.有解但解的个数不确定 7.. 已知等差数列{an}、?bn?的前n项和分别为Sn 、Tn,若
sna3n?,则8?( ) Tn2n?5b8A.
848912 B. C. D.
3777138.在锐角三角形ABC中,下列不等式一定成立的是( )
A. sinA?sinB B. cosA?cosB C. sinA?cosB D. sinA?cosB 9.在数列{an}中,已知a1=2,a2=7,an+2等于anan+1(n∈N)的个位数,则a2 001=( ) A.2 B.4 C.6 D.8
*
- 1 -
10若不等式x+ax-5>0在区间[1,2]上有解,则a的取值范围是( ) A.???,? B.?,??? C.???,4? D. ?4,???
2?? ? ?211.已知数列{an}满足a1=1,an=an-1+n(n≥2),则an=( )
2
?1??1?n?n?1?n?n?1?n2?n?2n?1A. B. C. D.
222214y2
12. 若两个正实数x,y满足+=1,且不等式x+ xy4( ) A.(-1,4) B.(-∞,-1)∪(4,+∞) C.(-4,1) D.(-∞,-4)∪(1,+∞) 第II卷(非选择题 共90分) 二、填空题:本大题共4小题,每小题5分,共20分. 13. 已知数列{an}的前n项和Sn=n2?n?1,则{an}的通项公式an=________. ?x?y?4≤0,?14. 若x,y满足约束条件?x?y?2≥0,则z?2x?y的最大值为________. ?y≥0,?15.等比数列的前n项和为Sn,s5?2如果 S10 =4,则S20的值是________. S5 16. 在△ABC中,角A、B、C所对的边分别为a、b、C、则sinB=__________. ?5a?ccosB?bcosC, ?三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17. (本题满分10分) 解不等式: (1)2x2?x?6?0 (2)2x?1?x?1?6 18. (本题满分12分) 已知等差数列的前三项依次为a,3,5a,前n项和为Sn,且Sk=121. (1)求a及k的值; (2)设数列{bn}的通项bn=,证明数列{bn}是等差数列,并求其前n项和Tn. 19.(本小题满分12分) 已知函数f?x??2cosxSnn?3cosx?sinx?3. ?(1)求函数f(x)的最大值 - 2 - (2)在?ABC中,角A、B、C所对的边是a、b、c,若A为锐角,且满足 f(A)?0, sinB?4sinC,?ABC的面积为 3,求边长a. 20. (本题满分12分) 已知x>0,y>0,且x+4y-2xy=0, 求:(1)xy的最小值; (2)x+y的最小值. 21. (本题满分12分) 已知△ABC中,角A,B,C的对边分别为a,b,c,cos A=(1)求tan C的值;(2)若a=22,求△ABC的面积. 22.(本小题满分12分) 已知数列{an},a1?4且an+1=3an-2(n∈N). * 225,sin B=cos C. 33(1)求数列{an}的通项公式 (2)设bn?log3(an?1),求数列??1??的前n项和为Sn ?bnbn?1? - 3 - 高二文科月考数学参考答案 1. 不等式 1?x?0的解集是( )A x?3A.{x|x?1或x>3} B.{x|x?1或x?3} C.{x|1?x<3} D.{x|1≤x≤3} 22a?b2aba?ba?ba?b 2.若a,b?R,则下列结论:①,②ab?③??2a?b222?④b?a?a?b,其中正确的个数是 ( ) C abA.1 B.2 C.3 D.4 3.已知等差数列{an}满足:a6=10,a12=34,则数列{an}的公差为( ) C A.8 B.6 C.4 D.2 4.在△ABC中,角A,B,C所对的边分别为a,b,c,若a=6?1,b=3,c=2,则A=( )B A. ππππ B. C. D. 6432 5.在等比数列{an}中,若a2a5a8=-27,则a3a7=( )D A.-9 B.6 C.-12 D.9 6. 在△ABC中,已知b=20,c=103,C=60°,则此三角形的解的情况是( )A A.有一解 B.有两解 C.无解 D.有解但解的个数不确定 7.. 已知等差数列{an}、若?bn?的前n项和分别为Sn 、Tn, sna3n?,则8?( )C Tn2n?5b8A. 848912 B. C. D. 3777138.在锐角三角形ABC中,下列不等式一定成立的是( )D A. sinA?sinB B. cosA?cosB C. sinA?cosB D. sinA?cosB 9.在数列{an}中,已知a1=2,a2=7,an+2等于anan+1(n∈N)的个位数,则a2 001=( )B A.2 B.4 C.6 D.8 10若不等式x+ax-5>0在区间[1,2]上有解,则a的取值范围是( ) B A.???,? B.?,??? C.???,4? D. ?4,??? 2?? ? ?211.已知数列{an}满足a1=1,an=an-1+n(n≥2),则an=( ) A 2 * ?1??1?n?n?1?n?n?1?n2?n?2n?1A. B. C. D. 2222 - 4 -
共分享92篇相关文档