当前位置:首页 > 上海历年中考数学压轴题复习
2006 年上海市初中毕业生统一学业考试数学试卷
25(本题满分14分,第(1)小题满分4分,第(2)小题满分7分,第(3)小题满分3
分)
已知点P在线段AB上,点O在线段AB的延长线上。以点O为圆心,OP为半径作圆,点C是圆O上的一点。
(1) 如图9,如果AP=2PB,PB=BO。求证:△CAO∽△BCO; (2) 如果AP=m(m是常数,且m〉1),BP=1,OP是OA、OB的比例中项。当点C在圆
O上运动时,求AC:BC的值(结果用含m的式子表示);
(3) 在(2)的条件下,讨论以BC为半径的圆B和以CA为半径的圆C的位置关系,
并写出相应m的取值范围。
C A
P B O 图9
25.(1)证明:QAP?2PB?PB?BO?PO,?AO?2PO.
AOPO??2. ······················· (2分) POBOQPO?CO, ························· (1分) AOCO.Q∠COA?∠BOC,?△CAO∽△BCO. ····· (1分) ??COBO(2)解:设OP?x,则OB?x?1,OA?x?m,QOP是OA,OB的比例中项, ??x2??x?1??x?m?, ····················· (1分)
mm,即OP?. ·················· (1分) m?1m?11. ························· (1分) ?OB?m?1得x?QOP是OA,OB的比例中项,即QOP?OC,?OAOP, ?OPOBOAOC. ··················· (1分) ?OCOB设圆O与线段AB的延长线相交于点Q,当点C与点P,点Q不重合时,
Q∠AOC?∠COB,?△CAO∽△BCO. ············ (1分) ACOC. ························· (1分) ??BCOBACOCOPAC????m;当点C与点P或点Q重合时,可得?m, BCOBOBBC?当点C在圆O上运动时,AC:BC?m; ············· (1分)
(3)解:由(2)得,AC?BC,且AC?BC??m?1?BC?m?1?,
AC?BC??m?1?BC,圆B和圆C的圆心距d?BC,
显然BC??m?1?BC,?圆B和圆C的位置关系只可能相交、内切或内含. 当圆B与圆C相交时,?m?1?BC?BC??m?1?BC,得0?m?2,
Qm?1,?1?m?2; ····················· (1分)
当圆B与圆C内切时,?m?1?BC?BC,得m?2; ········ (1分) 当圆B与圆C内含时,BC??m?1?BC,得m?2.
(1分)
2007年上海市初中毕业生统一学业考试
25.(本题满分14分,第(1)小题满分4分,第(2),(3)小题满分各5分)
o已知:∠MAN?60,点B在射线AM上,AB?4(如图10).P为直线AN上一动点,
以BP为边作等边三角形BPQ(点B,P,Q按顺时针排列),O是△BPQ的外心. (1)当点P在射线AN上运动时,求证:点O在∠MAN的平分线上; (2)当点P在射线AN上运动(点P与点A不重合)时,AO与BP交于点C,设AP?x,
ACgAO?y,求y关于x的函数解析式,并写出函数的定义域;
(3)若点D在射线AN上,AD?2,圆I为△ABD的内切圆.当△BPQ的边BP或BQ与圆I相切时,请直接写出点A与点O的距离.
A A P P
B OBO
M Q N M Q
N
图10
备用图
25.(1)证明:如图4,连结OB,OP,
QO是等边三角形BPQ的外心,?OB?OP, ················圆心角?BOP?360o?120o3. 当OB不垂直于AM时,作OH?AM,OT?AN,垂足分别为H,T. 由?HOT??A??AHO??ATO?360o,且?A?60o,
?AHO??ATO?90o,??HOT?120o.
??BOH??POT. ···························?Rt△BOH≌Rt△POT. ························?OH?OT.?点O在?MAN的平分线上. ················当OB?AM时,?APO?360o??A??BOP??OBA?90o. 即OP?AN,?点O在?MAN的平分线上.
综上所述,当点P在射线AN上运动时,点O在?MAN的平分线上.
A A HPT CP B OB O QM
NQ
M
N
图4
图5
(2)解:如图5,
QAO平分?MAN,且?MAN?60o,
??BAO??PAO?30o. ·························由(1)知,OB?OP,?BOP?120o,
分分分分分 1
1 1 1
1
??CBO?30o,??CBO??PAC.
Q?BCO??PCA,??AOB??APC. ·················· 1分 ?△ABO∽△ACP. ABAO.?ACgAO?ABgAP.?y?4x. ·············· 1分 ??ACAP定义域为:x?0. ···························· 1分
(3)解:①如图6,当BP与圆I相切时,AO?23; ············ 2分 ②如图7,当BP与圆I相切时,AO?43; ················ 1分 3③如图8,当BQ与圆I相切时,AO?0. ·················· 2分
(D) I P A P(A) P Q I D B O Q 图6
B O (A) O D I Q
M
N
M
图7
N
B M
N 图8
2008年上海市中考数学试卷
25.(本题满分14分,第(1)小题满分5分,第(2)小题满分4分,第(3)小题满分5分)
已知AB?2,AD?4,?DAB?90,AD∥BC(如图13).E是射线BC上的动点(点,M是线段DE的中点. E与点B不重合)
(1)设BE?x,△ABM的面积为y,求y关于x的函数解析式,并写出函数的定义域; (2)如果以线段AB为直径的圆与以线段DE为直径的圆外切,求线段BE的长;
o
共分享92篇相关文档