云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > LMS自适应预测实验报告

LMS自适应预测实验报告

  • 62 次阅读
  • 3 次下载
  • 2025/5/2 6:21:55

LMS自适应线性预测实验报告

一、实验要求

首先由二阶AR模型产生自适应滤波器的输入信号x(n),公式如下:

u(n)?a1u(n?1)?a2u(n?2)?v(n)

其中v(n)为方差为?v2的零均值高斯白噪声,模型参数a1与a2满足a12?4a2。二阶AR模型图如下:

v(n) ? ? x(n) a2 a1 z?1 z?1

二阶AR模型框图

得到自适应滤波器的输入信号x(n)后,通过二阶线性预测滤波器进行自适应线性预测,其框图如下:

x(n) z?1w1 z?1 w2+ ? 自适应算法

自适应线性滤波器

采用LMS算法进行自适应线性预测,设第n次预测的权值向量W(n)?[w1(n),w2(n)],第n次预测的输入数据向量X(n)?[x(n?1),x(n?2)],x(n)的预测值y(n)经滤波过程产生,其公式如下:

HHy(n) — ? e(n) y(n)?WH(n?1)X(n)

误差信号计算公式如下:

e(n)?x(n)?y(n)

权值更迭公式如下:

W(n)?W(n?1)?2?e(n)X(n)

其中?为迭代因子。

实验要求如下:

2 (1)令a1??0.195,a2?0.95,?v2?0.0965,?x?1,迭代因子?、数据长度N自定,给出

LMS自适应预测的仿真结果,结果用权值w1(n),w2(n)变化曲线以及误差平方e2(n)变化曲线表示,观察其收敛情况,分别进行单次预测及100次预测取平均值两次实验。

(2)条件与(1)相同,改变迭代因子?的值,分别进行单次预测及800次预测取平均值两次实验,观察其收敛情况。

(3)条件与(1)相同,但改变特征根扩散度?max/?min,

?max/?min?(1?a1?a2)/(1?a1?a2),可通过改变a1,a2的值实现,分别进行单次预测及100

次预测取平均值两次实验,观察其收敛情况。

二、理论分析

LMS算法的收敛是统计意义下的收敛问题,分别讨论其均值收敛及最小均方误差收敛。

1. 均值收敛

由权值更迭公式可进行如下推导:

W(n)?W(n?1)?2?e(n)X(n)

?W(n?1)?2?X(n)[d*(n)?XH(n)W(n?1)] ?[I?2?X(n)XH(n)]W(n?1)?2?X(n)d*(n)

E[W(n)]?{I?2?E[X(n)XH(n)]}E[W(n?1)]?2?E[X(n)d*(n)]

?[I?2?Rxx]E[W(n?1)]?2?rxd

设k时刻权值误差向量W(k)?W(k)?Wopt,则

W(k)?[I?2?Rxx]W(k?1)?2?rxd?Wopt

?W(k?1)?Wopt?2?RxxW(k?1)?2?rxd

?W(k?1)?2?Rxx[W(k?1)?Wopt]?2?rxd ?[W(k?1)?2?RxxW(k?1)]?2?(RxxWopt?rxd)

由维纳-霍夫方程RxxWopt?rxd知,2?(RxxWopt?rxd)?0,所以有

W(k)?[I?2?Rxx]W(k?1)

因为Rxx为Hermite矩阵,所以Rxx可分解为Rxx????H,其中??diag(?1,...?M),?i为Rxx的特征值,i?1,2,...M,设qi为特征值?i对应的特征向量。所以有

W(k)?[I?2????H]W(k?1)

又因为?为酉矩阵,I???H,所以有

W(k)??[I?2??]?HW(k?1)

令W(k)??HW(k),则

'W(k)?[I?2??]W(k?1)

Wi(k)?(1?2??i)Wi(k?1) Wi(k)?(1?2??i)kW0(k?1)

''''''对于所有的i?1,2,...M,如果|1?2??i|?1,当k??,Wi(k)?0,W(k)?Wopt. 所以LMS算法均值收敛的条件为0???1/?max,其?值越大,收敛速度越快。

'2. 均方误差收敛

由滤波公式及误差公式,得:

e(n)?d(n)?WH(n?1)X(n)

HH?[d(n)?WoptX(n)]?[WH(n?1)X(n)?WoptX(n)]

?e0(n)?W(n?1)X(n)

H其中e0(n)为第n次预测权值最优时的预测误差。

2*E[e2(n)]?E[e0(n)]?E[W(n?1)X(n)XH(n)W(n?1)]?2E[W(n?1)X(n)e0(n)]

HH??opt?E[W(n?1)]RxxE[W(n?1)]

H??opt??ex

当n??,?ex?0,E[e2(n)]??opt,LMS算法的均方误差收敛于最优预测权值的最小均方误差。

三、实验结果及分析

1. 单次预测与多次预测取平均结果对比

2取a1??0.195,a2?0.95,?v2?0.0965,?x?1,??0.02,分别进行单次预测及100次预测对

其权值和均方误差取平均,对比实验结果。

LMS算法权值收敛图

搜索更多关于: LMS自适应预测实验报告 的文档
  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

LMS自适应线性预测实验报告 一、实验要求 首先由二阶AR模型产生自适应滤波器的输入信号x(n),公式如下: u(n)?a1u(n?1)?a2u(n?2)?v(n) 其中v(n)为方差为?v2的零均值高斯白噪声,模型参数a1与a2满足a12?4a2。二阶AR模型图如下: v(n) ? ? x(n) a2 a1 z?1 z?1 二阶AR模型框图 得到自适应滤波器的输入信号x(n)后,通过二阶线性预测滤波器进行自适应线性预测,其框图如下: x(n) z?1w1 z?1 w2+ ? 自适应算法 自适应线性滤波器 采用LMS算法进行自适应线性预测,设第n次预测的权值向量W(n)?[w1(n),w2(n)],第n次预测的

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com