当前位置:首页 > (完整word版)初三数学二次函数单元测试题及答案(2)
答案与解析: 一、选择题
1.考点:二次函数概念.选A. 2.
考点:求二次函数的顶点坐标.
解析:法一,直接用二次函数顶点坐标公式求.法二,将二次函数解析式由一般形式转换为顶点式,即y=a(x-h)2+k的形式,顶点坐标即为(h,k),y=x2-2x+3=(x-1)2+2,所以顶点坐标为(1,2),答案选C. 3.
考点:二次函数的图象特点,顶点坐标.
解析:可以直接由顶点式形式求出顶点坐标进行判断,函数y=2(x-3)2的顶点为(3,0),所以顶点在x轴上,答案选C. 4.
考点:数形结合,二次函数y=ax2+bx+c的图象为抛物线,其对称轴为
.
解析:抛物线,直接利用公式,其对称轴所在直线为
答案选B.
5.
考点:二次函数的图象特征.
解析:由图象,抛物线开口方向向下,
抛物线对称轴在y轴右侧,
抛物线与y轴交点坐标为(0,c)点,由图知,该点在x轴上方,
答案选C. 6.
考点:数形结合,由抛物线的图象特征,确定二次函数解析式各项系数的符号特征.
解析:由图象,抛物线开口方向向下,
抛物线对称轴在y轴右侧,
抛物线与y轴交点坐标为(0,c)点,由图知,该点在x轴上方,
5
在第四象限,答案选D.
7.
考点:二次函数的图象特征.
解析:因为二次函数y=ax2+bx+c(a≠0)的图象的顶点P的横坐标是4,所以抛物线对称轴所在直线为x=4,交x轴于点D,所以A、B两点关于对称轴对称,因为点A(m,0),且m>4,所以AB=2AD=2(m-4)=2m-8,答案选C.
8.
考点:数形结合,由函数图象确定函数解析式各项系数的性质符号,由函数解析式各项系数的性质符号画出函数图象的大致形状.
解析:因为一次函数y=ax+b的图象经过第二、三、四象限,
所以二次函数y=ax2+bx的图象开口方向向下,对称轴在y轴左侧,交坐标轴于(0,0)点.答案选C. 9.
考点:一次函数、二次函数概念图象及性质.
解析:因为抛物线的对称轴为直线x=-1,且-1 考点:二次函数图象的变化.抛物线向左平移2个单位得到 .答案选C. 二、填空题 11. 考点:二次函数性质. 解析:二次函数y=x2-2x+1,所以对称轴所在直线方程答案x=1. 12. 6 的图象 ,再向上平移3个单位得到 . 考点:利用配方法变形二次函数解析式. 解析:y=x2-2x+3=(x2-2x+1)+2=(x-1)2+2.答案y=(x-1)2+2. 13. 考点:二次函数与一元二次方程关系. 解析:二次函数y=x2-2x-3与x轴交点A、B的横坐标为一元二次方程x2-2x-3=0的两个根,求得x1=-1,x2=3,则AB=|x2-x1|=4.答案为4. 14. 考点:求二次函数解析式. 解析:因为抛物线经过A(-1,0),B(3,0)两点,解得b=-2, c=-3, 答案为y=x2-2x-3. 15. 考点:此题是一道开放题,求解满足条件的二次函数解析式,答案不唯一. 解析:需满足抛物线与x轴交于两点,与y轴有交点,及△ABC是直角三角形,但没有确定哪个角为直角,答案不唯一,如:y=x2-1. 16. 考点:二次函数的性质,求最大值. 解析:直接代入公式,答案:7. 17. 考点:此题是一道开放题,求解满足条件的二次函数解析式,答案不唯一. 解析:如:y=x2-4x+3. 18. 考点:二次函数的概念性质,求值. 答案: 三、解答题 19. 考点:二次函数的概念、性质、图象,求解析式. 解析:(1)A′(3,-4) . (2)由题设知: ∴y=x2-3x-4为所求 7 (3) 20. 考点:二次函数的概念、性质、图象,求解析式. 解析:(1)由已知x1,x2是x2+(k-5)x-(k+4)=0的两根 又∵(x1+1)(x2+1)=-8 ∴x1x2+(x1+x2)+9=0 ∴-(k+4)-(k-5)+9=0 ∴k=5 ∴y=x2-9为所求 (2)由已知平移后的函数解析式为: y=(x-2)2-9 且x=0时y=-5 ∴C(0,-5),P(2,-9) . 21. 解: (1)依题意: (2)令y=0,得(x-5)(x+1)=0,x1=5,x2=-1 ∴B(5,0) 由 ,得M(2,9) 作ME⊥y轴于点E, 8
共分享92篇相关文档