云题海 - 专业文章范例文档资料分享平台

当前位置:首页 > 最新中考数学试卷分类汇编:与圆有关的压轴题(含答案)

最新中考数学试卷分类汇编:与圆有关的压轴题(含答案)

  • 62 次阅读
  • 3 次下载
  • 2025/5/26 11:35:25

① ② ③

【题6】(2014?湖州24题)已知在平面直角坐标系xOy中,O是坐标原点,以P(1,1)为圆心的⊙P与x轴,y轴分别相切于点M和点N,点F从点M出发,沿x轴正方向以每秒1个单位长度的速度运动,连接PF,过点PE⊥PF交y轴于点E,设点F运动的时间是t秒(t>0)

(1)若点E在y轴的负半轴上(如图所示),求证:PE=PF;

(2)在点F运动过程中,设OE=a,OF=b,试用含a的代数式表示b;

(3)作点F关于点M的对称点F′,经过M、E和F′三点的抛物线的对称轴交x轴于点Q,连接QE.在点F运动过程中,是否存在某一时刻,使得以点Q、O、E为顶点的三角形与以点P、M、F为顶点的三角形相似?若存在,请直接写出t的值;若不存在,请说明理由. 【分析】:(1)连接PM,PN,运用△PMF≌△PNE证明,

(2)分两种情况①当t>1时,点E在y轴的负半轴上,0<t≤1时,点E在y轴的正半轴或原点上,再根据(1)求解,

(3)分两种情况,当1<t<2时,当t>2时,三角形相似时还各有两种情况,根据比例式求出时间t. 【解答】: 证明:(1)如图,连接PM,PN,

∵⊙P与x轴,y轴分别相切于点M和点N, ∴PM⊥MF,PN⊥ON且PM=PN,

∴∠PMF=∠PNE=90°且∠NPM=90°,∵PE⊥PF, ∠NPE=∠MPF=90°﹣∠MPE, 在△PMF和△PNE中,

,∴△PMF≌△PNE(ASA),

∴PE=PF,

(2)解:①当t>1时,点E在y轴的负半轴上,如图, 由(1)得△PMF≌△PNE,∴NE=MF=t,PM=PN=1, ∴b=OF=OM+MF=1+t,a=NE﹣ON=t﹣1, ∴b﹣a=1+t﹣(t﹣1)=2,∴b=2+a,

②0<t≤1时,如图2,点E在y轴的正半轴或原点上,

同理可证△PMF≌△PNE,

∴b=OF=OM+MF=1+t,a=ON﹣NE=1﹣t, ∴b+a=1+t+1﹣t=2, ∴b=2﹣a, (3)如图3,(Ⅰ)当1<t<2时,

∵F(1+t,0),F和F′关于点M对称, ∴F′(1﹣t,0)

∵经过M、E和F′三点的抛物线的对称轴交x轴于点Q, ∴Q(1﹣t,0)∴OQ=1﹣t, 由(1)得△PMF≌△PNE ∴NE=MF=t,∴OE=t﹣1 当△OEQ∽△MPF∴解得,t=

=

=

, =

,当△OEQ∽△MFP时,∴

=,解得,t=,

(Ⅱ)如图4,当t>2时,

∵F(1+t,0),F和F′关于点M对称, ∴F′(1﹣t,0)

∵经过M、E和F′三点的抛物线的对称轴交x轴于点Q, ∴Q(1﹣t,0)∴OQ=t﹣1,

由(1)得△PMF≌△PNE ∴NE=MF=t,∴OE=t﹣1 当△OEQ∽△MPF∴

=

=

,无解,

当△OEQ∽△MFP时,∴所以当t=

,t=

=,=,解得,t=2±,

,t=2±时,使得以点Q、O、E为顶点的三角形与以点P、M、F

为顶点的三角形相似. 【点评】:本题主要考查了圆的综合题,解题的关键是把圆的知识与全等三角形与相似三角形相结合找出线段关系.

【题7】(2014?宁波26)木匠黄师傅用长AB=3,宽BC=2的矩形木板做一个尽可能大的圆形桌面,他设计了四种方案: 方案一:直接锯一个半径最大的圆;

方案二:圆心O1、O2分别在CD、AB上,半径分别是O1C、O2A,锯两个外切的半圆拼成一个圆;

方案三:沿对角线AC将矩形锯成两个三角形,适当平移三角形并锯一个最大的圆;

方案四:锯一块小矩形BCEF拼到矩形AFED下面,利用拼成的木板锯一个尽可能大的圆. (1)写出方案一中圆的半径;

(2)通过计算说明方案二和方案三中,哪个圆的半径较大? (3)在方案四中,设CE=x(0<x<1),圆的半径为y. ①求y关于x的函数解析式; ②当x取何值时圆的半径最大,最大半径为多少?并说明四种方案中哪一个圆形桌面的半径最大.

【考点】: 【分析】: 圆的综合题 (1)观察图易知,截圆的直径需不超过长方形长、宽中最短的边,由已知长宽分别为3,2,那么直接取圆直径最大为2,则半径最大为1. (2)方案二、方案三中求圆的半径是常规的利用勾股定理或三角形相似中对应边长成比例等性质解直角三角形求边长的题目.一般都先设出所求边长,而后利用关系代入表示其他相关边长,方案二中可利用△O1O2E为直角三角形,则满足勾股定理整理方程,方案三可利用△AOM∽△OFN后对应边成比例整理方程,进而可求r的值. (3)①类似(1)截圆的直径需不超过长方形长、宽中最短的边,虽然方案四中新拼的图象不一定为矩形,但直径也不得超过横纵向方向跨度.则选择最小跨度,取其,即为半径.由EC为x,则新拼图形水平方向跨度为3﹣x,竖直方向跨度为2+x,则需要先判断大小,而后分别讨论结论. ②已有关系表达式,则直接根据不等式性质易得方案四中的最大半径.另与前三方案比较,即得最终结论. 解:(1)方案一中的最大半径为1. 分析如下: 因为长方形的长宽分别为3,2,那么直接取圆直径最大为2,则半径最大为1. 【解答】: (2) 如图1,方案二中连接O1,O2,过O1作O1E⊥AB于E, 方案三中,过点O分别作AB,BF的垂线,交于M,N,此时M,N恰为⊙O与AB,BF的切点. 方案二: 设半径为r, 在Rt△O1O2E中, ∵O1O2=2r,O1E=BC=2,O2E=AB﹣AO1﹣CO2=3﹣2r, 222∴(2r)=2+(3﹣2r), 解得 r=. 方案三: 设半径为r, 在△AOM和△OFN中, , ∴△AOM∽△OFN, ∴∴, , 解得 r=. 比较知,方案三半径较大. (3)方案四: ①∵EC=x, ∴新拼图形水平方向跨度为3﹣x,竖直方向跨度为2+x. 类似(1),所截出圆的直径最大为3﹣x或2+x较小的. 1.当3﹣x<2+x时,即当x>时,r=(3﹣x); 2.当3﹣x=2+x时,即当x=时,r=(3﹣)=; 3.当3﹣x>2+x时,即当x<时,r=(2+x). ②当x>时,r=(3﹣x)<(3﹣)=; 当x=时,r=(3﹣)=; 当x<时,r=(2+x)<(2+)=, ∴方案四,当x=时,r最大为. ∵1<<<,

  • 收藏
  • 违规举报
  • 版权认领
下载文档10.00 元 加入VIP免费下载
推荐下载
本文作者:...

共分享92篇相关文档

文档简介:

① ② ③ 【题6】(2014?湖州24题)已知在平面直角坐标系xOy中,O是坐标原点,以P(1,1)为圆心的⊙P与x轴,y轴分别相切于点M和点N,点F从点M出发,沿x轴正方向以每秒1个单位长度的速度运动,连接PF,过点PE⊥PF交y轴于点E,设点F运动的时间是t秒(t>0) (1)若点E在y轴的负半轴上(如图所示),求证:PE=PF; (2)在点F运动过程中,设OE=a,OF=b,试用含a的代数式表示b; (3)作点F关于点M的对称点F′,经过M、E和F′三点的抛物线的对称轴交x轴于点Q,连接QE.在点F运动过程中,是否存在某一时刻,使得以点Q、O、E为顶点的三角形与以点P、M、

× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:10 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:fanwen365 QQ:370150219
Copyright © 云题海 All Rights Reserved. 苏ICP备16052595号-3 网站地图 客服QQ:370150219 邮箱:370150219@qq.com