当前位置:首页 > 最新八年级上册数学第一章知识点和题
精品文档
第一章 认识三角形
1.1认识三角形 ? 学习目标
1. 掌握三角形的概念,并能用符号正确表示三角形。 2. 能够正确地按角将三角形进行分类。
3. 理解三角形的三边关系,并利用其进行计算。
4. 理解三角形的角平分线、中线和高线的概念,会用量角器、三角尺等工具画三角形。
? 知识点
1. 定义:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫三角形。 “三角形” 用符号“△”表示,顶点是ABC的三角形记做“△ABC”读作“三角形ABC”。三角形基本元素(三条边、三个内角、三个顶点) 三角形内角和为180°
2. 性质:三角形任何两边之和大于第三边;三角形的任何两边之差小于第三边(两点之间线段最短) ★注:判断三条线段能否组成三角形,只有把最长的一条线段与另外两条线段的和作比较。
3. 按角进行分类:
锐角三角形(三角形的三个内角都小于90°);
直角三角形(三角形有一个角是90°);(记作Rt△ABC) 钝角三角形(三角形有一个角大于90°)。
AA
精品文档
BCBC精品文档
4. ★三角形的角平分线、中线和高线
角平分线定义:在三角形中,一个内角的角平分线与它的对边相交,这个角的定点与交点之间的线段就叫三角形的角平分线。
中线定义:在三角形中,连接一个顶点与它对边中点的线段叫做这个三角形的中线。
高线定义:从三角形的一个顶点向它的对边所在的直线作垂线,定点和垂足之间的线段叫做三角形的高。
★重要性质: 1角平分线上的点到角的两边距离相等。 2中线平分与它相交的边。
3一个三角形有三条角平分线、三条中线,并且都在三角形内部,交于一点。
4三种三角形都有三条高线,且其所在直线都交于一点。高线是顶点到对边所在直线的垂线段,所以垂足有可能在边的延长线上。
5. 三角形的面积:三角形的面积等于底乘于高除以2。
★同高等底的两个三角形面积相等。三角形的中线把三角形分成两个面积相等的三角形。 1.3 证明 ? 学习目标
1. 知道证明的意义和证明的必要性 2. 知道证明的过程及书写格式
精品文档
精品文档
3. 会证明三角形的内角和定理 4. 知道三角形的外角及外角的性质 ? 知识点 1. 证明
要判断一个命题是真命题,往往需要从命题的条件出发,根据已知的定义、基本事实、定理(包括推论),一步步推得结论成立,这样的推理过程叫做证明。 2. 三角形的外角及外角的性质
外角:由三角形的一条边的延长线和另一条相邻的边组成的角叫该三角形的外角。 3. 重要结论:
A.三角形三个内角的和等于180°;
B.三角形的一个外角等于和它不相邻的两个内角的和。 C. 三角形的一个外角大于任何一个和它不相邻的内角。 D.三角形的外角和为360° 4. 证明几何命题的一般格式
(1)按题意画出图形。
(2)分清命题的条件和结论,结合图形,在“已知”中写出条件,在“求证”中写出结论。
(3)在“证明”中写出推理过程。
注意:1.有些题目已经画好图形,写好已知和求证,这是只要写出“证明”一
步即可。
精品文档
精品文档
2.在解决几何问题时,有时需要添加辅助线,添加辅助线的过程要写入证明中,辅助线通常画成虚线。
1.4全等三角形+1.5三角形全等的判断
1. 全等三角形
定义: 1能够重合的两个图形称为全等图形;
全等用符号“≌”表示,读做“全等于“ 2能够重合的两个三角形形称为全等三角形;
3两个全等三角形重合时,能互相重合的顶点叫做全等三角形的对
应顶点;互相重合的边叫做全等三角形的对应边;互相重合的角叫做全等三角形的对应角。
性质:★全等三角形的对应边相等,对应角相等。
★三角形全等的条件
1 三边对应相等的两个三角形全等(简称“边边边”或“SSS”) ; 2 有一个角和夹这个角的两边对应相等的两个三角形全等(简称“边角边”或“SAS”);
3 有两个角和这个两角的夹边对应相等的两个三角形全等(简称“角边角”或“ASA”);
4 有两个角和其中一个角的对边对应相等的两个三角形全等(简称“角角边”或“AAS”);
5 HL(Rt△); (两Rt△三角形一条斜边与一条直角边对应相等 则两三
精品文档
共分享92篇相关文档